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ABSTRACT

The work in this thesis deals with a novel approach for detecting and tracking chemical plumes

in distributed sensor networks. The ultimate objective is solving the inverse location problem:

given unknown sources released at unknown times, the sensor network must estimate the location

and number of sources. Traditional solutions to this problem su�er from the challenge of a large

state space, and we therefore seek reduced dimensionality that would allow for real-time solutions.

Existing methods are generally computationally intensive, and become intractable when applied

to a large scale system that is capable of monitoring an entire city in real-time.

This problem is approached by tracking plumes using methods similar to multiple target track-

ing (MTT) as opposed to purely physical model inverse solutions. Although this tracking approach

requires a higher density of sensor nodes, larger numbers of simple binary low resolution sensors

have the advantage of higher spatial resolution. Binary sensor observations are partitioned into

tracks based a wind history derived likelihood. With the use of an estimator-based joint prob-

ability, groups of sensors form and rank hypotheses that explain the set of observations in the

network.

The main contribution of this work is track formation followed by the application of a custom

estimator � this process is called the 2-step algorithm. We developed a customized estimator for

plumes that allows the MTT-like algorithm to treat the plume tracking problem as the extreme

instance of the multi-target tacking (MTT) problem. The central question: how can a MTT-like

method be implemented for plumes in a network of simple sensors capable of only binary detection?

The simulation experiments demonstrate that the tracking based approach outperforms uniform

estimators in conditions of high wind direction variability.
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Chapter 1

Introduction

1.1 Tracking non-localized distributed processes

We are all familiar with the problem of incomplete information on a distributed event. During

a snowstorm, predicting the duration and magnitude of the storm is very di�cult without knowing

the current conditions in neighboring areas. Even very high resolution weather data, if only

collected from a single location, provides very little information about future weather. Weather is

a non-localized process, and observations from a single location are not su�cient to predict future

states or reconstruct an understanding of the process. Obviously tracking or predicting future

states of such a system requires the collection and merging of observations across time and space.

The question becomes how to assimilate these spatially distributed observations and gain a better

picture of an event happening over a large area.

The same problem of distributed information collection has an even more relevant application

than weather. Imagine the following Gedanken-experiment: a sudden news report appears of

the suspected detonation of a radioactive bomb near a major city. This city has been out�tted

with �xed, binary sensors for radiation detection. Figure 1.1 shows the time sequence of sensor

activations that might result. A stream of observations arrive at these large number of sensors but

the questions remain: Where was the release? How many release sources? How are observations

correlated?

Imagine a few hours later several nearby monitoring stations in the region have veri�ed the

radiation, but in the chaos and panic that follows con�icting reports abound in the media. The

release site is unknown and the number of sources can not be determined. This situation is

1
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Figure 1.1: Binary harmful agent sensors in a city are activated over time in a non-obvious sequence.
Circles indicate sensor position, and �lled circles are sensors with a detection. At time t = 20 (a) a
few localized detections are made of an agent. As time and wind evolve in t = 100(b), t = 175(c), it
is not obvious where the source(s) are located. The truth is revealed in (d) as two sources marked
with �+.� In this scenario of 250 time-steps the �rst source was released at time-step 0, and the
second at time-step 100.
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not due to a lack of information, rather the lack of ability to quickly process or correlate vast

numbers of observations. In the United States the collection of air samples, laboratory processing,

and dissemination of information is currently highly personnel intensive and involves multiple

bureaucratic agencies including the EPA (Environmental Protection Agency), DHS (Department

of Homeland Security), LRN (Laboratory Response Network), and the CDC (Center for Disease

Control). Due to the major human component in analysis information may be lost, misplaced, or

not be retrieved even if relevant. Historical examples of complex harmful agent events include:

• The serin nerve gas attacks in Japan

• The anthrax scare in U.S. Congress

• A false positive detection of tularemia on the Washington DC Mall by Bio Watch sensors

These scenarios required days or weeks to deconstruct and explain what events or sources led to

sickness, deaths, or false detections [32]. If an automated network of sensors had been in place, it

is possible that the time for information processing and retrieval could have been greatly reduced.

Japan's Subway Terrorism

Several attacks were carried out on judges in Japan by Aum Shinrikyo (a sect), but the judges

were not harmed. Instead, unintended victims were harmed when the wind shifted and the airborne

deployment of serin nerve gas changed direction. These e�orts illustrate the di�culty of predicting

the e�ects of a airborne agent attack, even by the attackers. Aum Shinrikyo improved its tactics

for a Tokyo subway attack in 1995. This underground attack used the closed space of the subway

as a containment zone, killing over 12 people and making many more ill [32].

BioWatch

Small amounts of F. tularensis were detected in the Mall area of Washington, DC the morning

after an anti-war demonstration on Sept. 24, 2005. Biohazzard sensors were triggered at six

locations surrounding the Mall [15, 33]. To this date, no cases of tularemia infection have been

reported as a result and this event can be considered a �false positive� threat detection. In the

2005 tularemia incident, an air monitoring program named �BioWatch� had pathogen sensors co-

located with EPA stations, but �lters from the stations must be collected once every 24 hours

and shipped to a laboratory for processing. Equipment for BioWatch is located in select cities

reportedly including Philadelphia, New York City, Washington, DC, San Diego, Boston, Chicago,

3



San Francisco, St. Louis, Houston, and Los Angeles [48]. The Department of Homeland Security

does not con�rm the exact number of cities engaged in the BioWatch program, nor the number

of harmful agents being detected, but it is estimated that up to 120 cities may be included in the

United States [6, 5]. While the exact cost of BioWatch is not published, the the yearly budget for

one year is estimated at $1 million per city [48]. President Bush said during his State of the Union

address in 2003, immediately before the establishment of the BioWatch program:

Today, the gravest danger in the war on terror, the gravest danger facing America

and the world, is outlaw regimes that seek and possess nuclear, chemical, and biological

weapons. These regimes could use such weapons for blackmail, terror, and mass murder.

They could also give or sell those weapons to terrorist allies, who would use them

without the least hesitation. 1

Unfortunately, the methodology applied by the expensive BioWatch program relies on a relatively

low number of monitoring stations, as well as the human transport of air particle samples to

laboratory facilities at 24-hour intervals. This type of monitoring worked well for traditional

static large events such as factories or nuclear reactors, but does not o�er an information sharing

component needed to cover a large geographic area.

The main missing element of BioWatch is information sharing and correlation in an automated

way. Even with large amounts of data available, identifying the underlying processes producing

the data is presently very di�cult. Catastrophic events such as dirty bombs, biological agents,

hazardous chemicals, or radioactive devices have great uncertainty in time and space, with a highly

uniform prior distribution on release locations [13]. We propose that the best method for achieving

wide coverage areas of detection are small inexpensive devices that can be networked on a large

scale.

Quickly assessing the current state of an a�ected region demands the automated processing of

large numbers of observations yielding potentially competing hypotheses. We de�ne a hypothesis

as one particular explanation of the provided observations. This thesis presents a method capable

of analyzing large numbers of chemical observations by assigning sensor observations to tracks and

hypotheses which are constantly updated, pruned, and ranked on the basis of their likelihood. A

set of observations can be explained by multiple hypotheses. As new observations arrive in time,

the ranking of hypotheses can change [26]. The inspiration for attempting this approach is based

1State of the Union Address, January 28, 2003, online at:
http://www.whitehouse.gov/news/releases/2003/01/20030128-19.html.
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on established work in the �eld of �Multiple Hypothesis Tracking� or MHT [44].

The �eld of �sensor networks� emerged with the recent availability of microprocessors, sensors,

and wireless communications hardware. Target tracking of a maneuvering target in a �eld of sensors

has become a canonical sensor network problem [36]. To this date, most research has focused on

low-level problems such as ad hoc routing of data within these networks, power conservation, geo-

location, and communication protocols [22, 40, 51, 50, 17, 27]. We assume other groups will handle

these important issues of power and connectivity, and therefore choose to focus on the information

processing problem within a sensor network. That is, assuming large amounts of real time data

are available to a central location, how can we prevent information overloading and reduce the

amount of human interaction required to identify processes of interest in the data?

By leveraging sensor networking technologies, the promise of solving the distributed chemical

plume problem with large numbers of simple sensor devices has become possible. Using concepts

such as data fusion, information assimilation, and distributed object tracking in ad hoc networks,

the potential of agent technologies in future applications has been illustrated. The availability

of the hardware and software components for sensor networks enables us to consider solving the

plume problem with novel information theoretic approaches. For example, instead of numerically

solving complex models based on meteorology, data from a high density sensor network can be

treated as other target tracking problems with a simple model. The use of higher sensor density

allows the use of less complex models. Due to the fact that these sensor network technologies have

matured, we believe that leveraging them for the solution of the plume location problem is an

appropriate and timely e�ort.

Research groups have already successfully demonstrated the tracking of vehicles, humans, and

computer attacks with the use of distributed sensor networks [17, 1, 51, 40, 31, 20]. But unlike

�nite targets, a non-rigid plume spans a region and requires the assimilation of information about

a non-localized continuum of targets [51]. Unlike a target that exists in a single con�ned area

at any given time, a plume target is constantly changing shape and size. This aspect of plume

tracking (being non-localized) makes the problem unique and more challenging than the traditional

target tracking problem. Determination of the entire region of the plume is beyond the scope of this

thesis, and we focus on localization of the plume source as the target. In this theses work the plume

source is de�ned as the �target.� This di�ers greatly from traditional target tracking problems (i.e.

following the path of an airplane) in that the target is stationary, but the medium transporting

information about the target (di�usion and wind in the atmosphere) is highly non-stationary.
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If a region on land, water, or air is instrumented with a network of physical sensors capable of

detecting a speci�c chemical, it would be useful to infer from collected data as much information

about the source(s) as possible. This thesis work aims to answer the following questions about

observations in such a sensor network:

1. Were groups of sensor observations produced by the same source?

2. How many release locations were there?

3. What is the best estimate of where and when the releases occurred?

A traditional monitoring system (i.e. Bio Watch) does not have the ability to automatically

combine sensor observations across a large geographic area; therefore it has limited capability

to provide information about the source location. The system that we have developed takes

into account multiple sensor observations in order to pinpoint the plume source(s). This new

collaborative approach uses groups of sensor observations as opposed to singular detections.

In hazardous environments, typical measurements and calculations for plumes estimate the

state of the plume in the future. Projecting current observations into the future is known as a

forward problem. In the case of a hazardous chemical attack, it is imperative to know information

about plume history. This requires solving the inverse problem: taking current observations and

making assertions about the source [46, 16]. In this thesis, we run a simple forward model to

generate observations and then collect observations in an attempt to solve the inverse problem.

This inverse problem is solved by using a novel approach based on the Process Query System

(PQS) which is well suited to overcome many of the inherent di�culties of such an inverse problem

[12].

The primary di�culty of the inverse plume problem is the very large state space if the problem is

to be solved in a purely numerical way. For example if a typical American city the size of Cleveland,

Ohio (≈ 200 km2 ) were to be monitored for chemical attacks and the data were collected for

centralized computation, the problem would be immense. Common atmospheric inverse models

divide regions into 1m grids, resulting in a total of 2 × 108 nodes for Cleveland, as a purely two-

dimensional problem. These numerical methods are fundamentally sensitive to initial conditions,

and su�er from attempts to solve a highly non-linear chaotic system [18]. Because observations of

the environment are generally spatially sparse, the models must be correspondingly complex.

More dense sensor arrays however, allow for less complex models. It seems likely that the only

way these large scale atmospheric models will be solved at high resolution are via higher sensor
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density, not more complex models. Anyone who follows state of the art snow forecasts as compared

to actual results more than one day in advance is aware of the limitations of models running on

modern day super computers. These models often must run for hours to make predictions for a

few hours of data [19]. Given current constraints in computing power, a highly accurate numerical

inverse solution to the real-time chemical plume tracking problem is not a viable solution for sensor

networks.

Innate properties of chemical plumes make for a very di�cult inverse problem. Plume concen-

trations are discontinuous: only a few meters from the source the gradient is too shallow to detect

using time averaging. Turbulence results in �laments of high concentration at signi�cant distances,

but also high intermittency. It is common to measure a concentration of zero 80% of the time even

in the proximity of the source [30, 31, 45]. Large readings may be present at great distances from

the source. Plume propagation is largely determined by wind, which results in chaotic �ow regimes

and the possibility of extremely non-linear plume expansion.

A naive �rst order approach to the inverse plume problem might begin by a simple two-

dimensional solution to the di�usion equation. However, the well behaved di�usion process is

only a minor physical force for transport. Wind is approximately 10 times more relevant than

di�usion for transport [42, 11, 10]. Traditional methods for inverse array signal processing based

on precise signal intensity fail to transfer into the plume tracking domain due to the highly chaotic

nature of plume �uid dynamics.

Another challenge is that chemical observations are often of extremely low resolution, and

only indicate a positive or negative result. Common chemical and biological sensors have low

false alarm rates, but a potentially high missed detection rate. Accurate chemical or biological

sensors frequently are speci�c to a particular agent (i.e. hydrocarbons or carbon monoxide) which

makes the deployment of a multipurpose �eet of sensors expensive. More generalized sensors such

as smoke detectors generally have a simple threshold detection mechanism without selectivity to

a speci�c agent. This makes the di�erentiation and attribution of plume sources di�cult. The

combination of unpredictable propagation patterns and low resolution sensors makes a solution

of the inverse problem with concentration values and triangulation among sensor nodes a very

di�cult problem.

New hardware networking technologies allow one to consider solving the inverse plume problem

with a large number of nodes as opposed to the use of highly complex atmospheric models with a

smaller number of nodes. The use of a large number of nodes, however, introduces a new variety of
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non-trivial challenges. How should these large numbers of sensor observations be collected, �ltered,

correlated, and assimilated? Obviously a city containing thousands or millions of embedded sensor

nodes could not rely on human data interpretation for event identi�cation.

Our research group at Dartmouth College has spent several years developing a concept called

The Process Query System (PQS) which answers many of the needs presented by this large sensor

network data correlation problem [12, 1]. PQS is designed for real time observation processing,

which leads to a great reduction of large data-sets, allowing data analysts to focus on higher level

processes within the data. In the plume application, we wish to select only the most relevant

sensor observations, and group them into tracks which greatly speeds up the time required for

data analysis.

PQS is based on the familiar signal processing concept of correlation and signal extraction.

Given signals (or observations) embedded in an extremely noisy environment, can the presence of

the signal of interest be detected? Another central notion in PQS is the concept of a process. All

physical or virtual systems may potentially be modeled as �nite state systems (even if those states

may be hidden or unknown) and these states emit observables indicating the current state [43].

In the case of the inverse plume problem the state of the system might be posed as locations in a

two-dimensional area that have or do not have a plume source.

Using the PQS paradigm one develops models matching possible states of the system, and

correlates these models against current observations. In this way PQS is able to correlate or �lter

large numbers of observations and only return events or models of interest - shielding the end

user from having to interpret large volumes of low level raw data. PQS has already been used

successfully in the area of computer security, and one can think of plume sensor networks as an

extension of computer networks into physical world in real time.

In addition, PQS utilizes the concept of hypotheses, developing the concept of multiple hypoth-

esis tracking which is well established in the radar tracking community [44, 3, 2, 1]. A hypothesis

is de�ned as a set of possible �tracks� which are not limited to the traditional notion of physical

target tracks. In the case of the plume problem or computer security a track is a collection of

observations belonging to a group. Groups of observations are assigned to tracks, and a particular

permutation of track assignments is known as a �hypothesis.� Groups of competing hypotheses are

maintained and ranked by statistical likelihood.

These concepts �t well with the goals of the large sensor array system seeking to track plumes,

where the tracks will be assigned to trajectories or pathways in which the plume travels. Multiple
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track permutations could generate the current set of observations, and therefore multiple hypothesis

are maintained over time. By maintaining multiple hypotheses, tracks can be initiated, added to,

or deleted as new observations arrive. Quickly assessing the current state of an a�ected region thus

demands the automated processing of large numbers of observations yielding potentially competing

hypotheses. The PQS approach addresses many of the special needs of the inverse plume challenge

such as vast amounts of real time data, and the delayed arrival of observations.

1.2 Other work

This section brie�y outlines other work on the problem of plume source detection. The ap-

proaches for plume source detection are summarized in Figure 1.2 which divides the existing work

into four quadrants. The two axes used to classify approaches are model complexity and sensor

mobility. Highly complex model approaches generally attempt numerical solutions to the plume

physics. The �uid dynamics of plumes are described by di�erential equations, and inverse ap-

proximations to these equations are solved based on current observations. Simple models are

generally rule based, independent of physical models, and give instructions to robots for moving

closer to a source. Highly mobile robots typically attempt to receive guidance from these rule

based algorithms to locate the plume source. Stationary sensor methods rely on a higher density

of simple sensors that continuously monitor their position. The parameters of mobility and model

complexity are the two primary features that di�erentiate the majority of the approaches.

Quadrant I consists of highly mobile agents that utilize complex computational models. An

example of such a system is an advanced underwater plume sni�ng robot prototype which analyzes

high resolution concentration measurements based on Hidden Markov Models (HMMs) [20]. The

cost of such robots currently prohibits the deployment of large �eets to cover a large region; however

it is a fascinating area of work with future potential.

One of the most popular areas of research has been quadrant II: mobile robots with simple

models [34, 29, 27]. These e�orts focus on swarm intelligence with large numbers of simple agent

robots. The advantages of large numbers of simple robots are the coverage of a large spatial region,

simple models, and the ability of robots to track or move towards release sites. The problem of

long lasting battery power for mobile robots is presently a limiting factor. Maintaining a �eet of

fully charged robots is not presently viable for long term monitoring of a region.

We believe the most promising area to lie in quadrant III: low model complexity and non-
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Figure 1.2: Quadrants of existing work

mobile sensors. Inexpensive static nodes allow for the lowest cost and highest sensor density, and

much less power consumption. Simple devices which can be deployed with low power consumption

could monitor a region for long periods of time. Similar to �re alarms that monitor a building

until a incident occurs, there is a great advantage to having a system able to run in standby for

many years. As an analogy, most buildings are equipped with stationary �re and smoke detectors

� generally the best solution for high spatial coverage and long term monitoring. By choosing a

static sensor platform of high density simple devices, it becomes possible to monitor large regions

over long time periods.Static systems require much less maintenance, power, and can provide high

density observations.

Context of problem to other work

The inverse source location goal of this thesis is addressed in the literature of meteorology, sensor

networks, and most commonly robotics. Companies involved in environmental monitoring began

as industrial pollutant monitors for industrial compliance, but have now have adapted models

from meteorology to homeland security applications. Although similar to industrial pollution

monitoring, the inverse plume source problem for terrorism attacks is di�erent in that the number

of potential source locations is much greater for an arbitrary attack than for the monitoring of a

limited number of static industrial sites.

Most modern meteorology models are categorized as some type of data assimilation method.

Current weather observations such as wind, temperature, and pressure are used to predict future
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events based on the current state of observations. The Ensemble Kalman Filter Approach (EnKF)

is one popular data assimilation method which can be used for the estimation of previous states

leading to the current set of observations [18, 19]. The EnKF is a Monte Carlo approach, typically

used in weather and climate simulations. It makes random trial guesses about the initial state and

runs models forward, calculating the error of simulated observations to actual observations.

This random brute-force approach results in a large state space and is very computationally

intensive. Acceptable results typically require the storage of 100 initial model states, and thus the

CPU requirements are of the order of 100 model integrations up until the current time for each

current observation set. It is well suited for situations in which parallel computers and workstations

are available and each processor integrates a portion of the members of the ensemble. It would

not be very appropriate for distributed sensor networks of low cost devices.

Particle �lters are another type of statistical method, also known as Sequential Monte Carlo

Methods (SMC) [9]. Particle �lters estimate model parameters based on large numbers of simula-

tions with di�erent initial conditions. They seek to estimate a sequence of hidden parameters, xk

for k = 0, 1, 2, 3..., based only on the available data yk, for k = 0, 1, 2, 3, ... As with all Bayesian es-

timates of xk, they follow the posterior distribution [24]. With particle �lters, however, an estimate

is obtained for the �ltering distribution p(xk|y0, y1, ..., yk).

In the usual MCMC (Markov Chain Monte Carlo) approach the full posterior distribution is

estimated: p(x0, x1, ...xk|y0, y1, ..., yk). SMC methods run large numbers of simulations and can be

much faster than MCMC, and can be used to estimate Bayesian models very accurately [49]. SMC

methods approximate a sequence of probability distributions using large sets of random samples,

termed �particles.� With a su�cient number of particles (as the number of particles approaches

in�nity) guesses approach the Bayesian optimal estimate, and an active area of research is the

optimal placement of these particles in time and space such that a reasonable number of particles

can be used. For the same reasons of computational complexity, SMC is not appropriate for the

application of low cost sensor networks at this time.

In mathematical terms, the prior distribution for the plume release points is much more uni-

formly distributed than for locating a factory or �xed source. Members of the sensor network

research �eld and mobile robot community have adapted target tracking methods to the inverse

plume problem [21, 20, 28]. These solutions are generally aimed at mobile robot platforms and

emphasize control theory and decentralized robot control. The limitation of mobile robots for long

term monitoring is the large amount of power needed for locomotion. These attempts fall into two
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broad categories: 1) �eets of simple robot agents and 2) a small number of sophisticated robots.

Both of these approaches have essentially posed the challenge as a control theory problem. Di�er-

ent models for robotic movement behavior, decision making, air sampling, information exchange,

and collaborative decision making attempt to guide autonomous robot(s) to the plume origin.

Many of the robotic behavior algorithms are adapted from animal tracking behavior such as bees,

lobsters, or moths. The origin of these approaches is that groups of these animals in nature are

exceedingly good at collaboratively locating scents.

Using land-based robots to sni� airborne concentrations, concentration gradients are detected

and information is shared between nodes in the e�ort of collaborative source location [27]. In

the venue of underwater robots, testing was performed with one sophisticated unmanned vessel

in which concentration as a function of time was analyzed using Hidden Markov Models with

the idea that concentration waveforms contain information about source distance [20, 43, 35].

In this experiment, when the robot traverses a plume, di�erent concentration waveforms were

observed far away from a source compared to near a source. This location method is termed plume

mapping. Mobile robots will not be considered in this thesis work due to the constraints of power

consumption and long term deployment. Robot deployment may be suitable for covering a large

area with sensing assets after a release has occurred in a known region.

If a matrix is constructed summarizing the level of di�culty of inverse plume source problems,

problems can be categorized into classes with increasing degrees of di�culty (A - D, with D being

the most di�cult). In general the solutions to class A, B, and C problems are well understood and

very commonly implemented. The primary mode of operation for this work is indicated in class D

where sensor density is high, however sensors will contain very quantized observations and intermit-

tent reporting. The time of the release(s) is not known. These are conditions typical of inexpensive

but highly distributed sensor nodes operating in ad hoc networks. The techniques mentioned at

the beginning of this section are commonly used to solve the computationally intensive problem of

accurate inverse advection-di�usion, but require the presence of high resolution observations. For

this reason the observations are typically spatially sparse, with distances of miles or tens of miles

between weather stations. These traditional methods are categorized as �easy� since they are well

documented and e�ective.

If, however, we wish to gain higher monitoring resolution in chaotic �ow regions such as cities,

a higher sampling density is required. In this case large numbers of observations require the

sacri�ce of high concentration precision. Therefore, the inverse problem is now termed as �hard.�
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PARAMETER (+/- factors) A
EASY

B C D
HARD

Time of source release (+) X X X O
Prior Distribution (+) X X O O
Wind (-) O X X X
Unknown number of sources(-) O O X X
Intermittent Sensor Reports (-) O O O X
Quantized Sensor Resolution (-) O O O X

Table 1.1: The inverse plume source problem divided into four classes of di�culty. This thesis
work focuses on class D with unknown release time(s), intermittent sensor reports, and variable or
low resolution sensor observations. X=element is present, 0=element not present. (+) parameter
assists solution. (-) parameter makes solution more di�cult.

Working with highly noisy, highly quantized observations is the focus of this thesis, and falls in

a class of work not yet established. It is the purpose of this research to solve the source location

problem in scenarios that have limited information about potential source locations in the presence

of wind, highly intermittent sensor reports, and low resolution observations. By taking advantage

of models which are not purely physical in nature it is possible to make statistical correlations

between observations without fully understanding the complex analytical solution to the problem.

1.3 Summary of major results

The main contributions of this work are (1) a real-time simulation system for testing the

response of sensor networks to the release of a chemical plume; (2) a demonstration of the system

tracking and locating the sources of plumes within a two-dimensional area; and (3) three new

algorithms developed for the system:

• A plume sensor data association algorithm that determines the likelihood of association

between observations made at neighboring binary sensors within a region. This data associ-

ation value is based on the wind history, di�usion constant of the chemical substance, and

the relative location of two sensors.

• A track building algorithm which creates tracks of sensor observations. Tracks are de�ned as

collections of observations believed to originate from the same plume release source. Obser-

vations are added to tracks based on data association values with other observations already

part of a track. Track building performance can be optimized by adjusting parameters of

data association thresholds, as well rules for inclusion to a track. This is the �rst step of the

2-step algorithm.
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• A custom state estimator algorithm which operates on the observations selected to be in-

cluded in a track. This algorithm performs an inverse source location estimation based on a

set of observations. This is the second step of the 2-step algorithm.

Initial e�orts on this research were aimed at creating a hardware system capable of �eld testing

the inverse plume source location tracking concepts. Field experiments require a focus on sensor

networking, ad hoc networks, and data collection within the network. It was decided to focus on

the data processing aspect of the tracking theory, and hardware e�orts were abandoned in favor

of simulation. Working in simulation allowed concentration on high level information extraction,

and theoretical limits of the tracking approach to plume source detection.

We will show that adapting concepts from MTT to the plume tracking problem in sensor

networks leads to a new method with several bene�ts. First, the method is e�ective in large

sensor networks where nodes provide only intermittent observations. Chapter 2 will present plume

dynamics theory and the standard approaches used in sensor networks for target tracking that are

relevant to the plume tracking problem. Chapter 3 poses the exact mathematical problem and

develops the theory and the speci�c solution developed in this thesis. Next, Chapter 4 presents

the simulation system and describes the implementation of the concepts in software. Chapter 5

reviews the performance of the tracking system simulation and examines its advantages compared

to non-tracking based systems.

For an unknown number of plume releases that di�use as a Gaussian, we will estimate the

number of releases, and a likelihood map for each release showing the estimated location in two

dimensions. Under many conditions, the MTT-like method will be more accurate than analytical

methods. To analyze the performance of the tracking approach two experimental studies will

demonstrate the advantages of the MTT method.

1. Source estimation as a function of sensor density

2. Source estimation as a function of wind direction variability in the sensor �eld

The experimental results from these two studies presented in Chapter 5 reveals that the tracking

based approach has a much greater ability to identify the number of plume sources, can operate

in lower sensor density areas, and performs well in areas of high wind variation.

This thesis will show that it is possible to solve the inverse plume source problem with low

resolution observations from simple sensors. Binary detection is a realistic approximation to many
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current detectors for chemical, biological, or radiation threats. By using MTT-like data association

methods groups of sensors will report a likelihood map indicating the most likely release point that

generated the observations. The complete inverse problem of the parabolic di�usion equation is

ill-posed and nonlinear, so a numerical solution is quite di�cult. We solve the ill-posed problem

by using probability, data association, and tracking methods.

Unlike traditional analytical �solutions� to inverse problems we will not produce a unique so-

lution to each set of observations, but instead generate families of hypotheses which explain the

observations. We have presented previous work which shows the viability of the tracking ap-

proach, but the results in the thesis will focus on the performance of hypotheses via likelihood

maps [37, 38, 39]. These hypotheses will be in the form of likelihood maps which indicate the areas

within the region which most likely produced the observations.

We will see that belief maps of simple sensor networks not using tracking will require a higher

density of nodes for similar performance, and that sensor networks applying MTT before the gener-

ation of belief maps will predict the source location more accurately in conditions of highly variable

wind. This advantage is especially apparent in situations with highly variable wind direction and

low sensor density. In addition, the determination of the number of sources will have dramatically

better results with MTT methods.
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Chapter 2

Background: plume dynamics and

statistical theory

This chapter introduces the forces acting on a plume from �rst principles. The two forces

considered in the equation describing plume concentration are di�usion and advection (wind).

The analytical solution of these equations leads to a method for inverting sensor observations to

�nd the source location. This purely analytical approach to solving for source release locations

breaks down once highly noisy or binary sensor observations are introduced. The binary sensor

problem means that statistical approaches are required. The second half of the chapter introduces

the relevant Bayesian statistics and tracking theory used in the tracking based solution to the

plume problem. Finally the concept of PQS (Process Query Systems) are introduced; the tracking

based approach to plume detection originates from PQS concepts.

2.1 Classical dynamics of aerosol releases

This section explains the classical models used to describe plume dynamics. Although the

forward evolution of a plume is completely described by classical physics, performing the inverse

problem based solely on these methods quickly becomes intractable [49]. Once binary sensors are

introduced as the observation mechanism, the traditional analytical methods fail to extend. For

this reason, a statistical Bayesian formulation to the problem is an obvious approach to consider.

The next section will handle the statistical approach of using state estimation and target tracking

techniques.
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2.1.1 Di�usion modeling

Di�usion can be viewed as the random wandering of an ensemble of particles from regions

of higher concentration to areas of lower concentration. This is the process by which matter is

transported from one place to another as a result of random molecular motion. If it was possible

to watch individual molecules, it would be observed that a single particle moves randomly, having

no preferred direction of movement [10]. The behavior of clouds of particles can be derived from

considering large numbers of these single particles. The mathematical model used to describe such

random motion is called Brownian motion. Figure 2.1 illustrates the path of a single particle under

such Brownian motion for two di�erent numbers of steps 1.

The most basic way to model di�usion is with the �random walk� of a single particle. In a

1D random walk each particle moves independently and moves during each time interval , ∆t,

according to the following rules:

• there is a 25% chance of the particle moving to the right

• there is a 25% chance of the particle moving to the left

• there is a 50% chance of the particle staying in the same position [11].

Due to the random and non-deterministic description of a random walk, we can only describe the

future position of a particle in terms of probabilities. In the case of a 1D random walk, what is

the expected likelihood that a particle will wander a distance n∆x after m steps of time, ∆t? In

terms of probabilities this can be de�ned:

p(n∆x, m∆t) (2.1)

where the distance at each successive time (m + 1)∆t is based on the distance at time, m∆t. It is

well known that the expected distance from the starting position at time 0 for a random walk after

m time-steps is proportional to
√

m. Figure 2.2 illustrates a random walk experiment performed

in 1D for M = 30, the total number of time-steps. The actual distance of 5 is close to the expected

value of
√

M =
√

30= 5.48...

The connection between random walks and analytical descriptions of di�usion occurs once we

take the limit of the random-walk process for very small time-steps ∆t and very small distances

1http://en.wikipedia.org/wiki/Image:Brownian_hierarchical.png
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Figure 2.1: Position as a function of time for a particle undergoing the stochastic process known
as Brownian motion, with 256 (dark blue) , and 2048 steps (light blue). The particle path begins
in the upper right and ends in the lower right section of this plot. The di�usion equation produces
an approximation of the time evolution of the probability density function associated with the
position of the particle .
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Figure 2.2: Random walk in 1D where
√

m is the expected distance after m steps.

∆x. Using a Taylor expansion of 2.1 for small incremental values of its arguments and making some

mathematical simpli�cations produces an equation similar to the well known di�usion equation:

∂p

∂t
= D

∂2p

∂x2
+ O(∆t,

∆x4

∆t
), (2.2)

where the di�usion constant D is de�ned:

D =
∆x2

4∆t
,

and the error term on the order ∆x4

∆t goes to zero in the limit. When this occurs, the random walk

equation produces:

∂c

∂t
= D

∂2c

∂x2
. (2.3)

which is also known as the di�usion equation.

By developing this random walk model for particle di�usion, we can build a simulation to study

plume tracking in sensor networks. A plume experiment consists of setting up the parameters for

the plume (wind speed, total particle count, number of iterations to run, di�usion constants) and

then placing sensors within the plume �eld. Wind is introduced by skewing the transition proba-

bilities in a direction. Once the experiment concludes, the user has access to the concentration as a

function of time at each of the sensor locations. Using this collected data, the plume sensor network

may then implement a number of coordinated algorithms to estimate the plume source as well as

plume boundaries. This method was attempted, but it soon became obvious that a random walk

approach was too computationally intensive for desktop computer based experiments. Correctly
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simulating a plume requires modeling thousands or millions of particles, and their independent

locations.

Another approach to generating a plume di�usion model is developing an analytical expression

for concentration from �rst principles. Di�usion as well as heat transfer are due to the random

motion of molecules and obey the same mathematical theory. This was �rst recognized by Fick

(1855) who adopted the heat equation developed by Fourier (1822). This mathematical theory

states the rate of transfer of di�using substance through unit area is proportional to the concen-

tration gradient normal to that section,

F = −D
∂C

∂x
, (2.4)

where F is the rate of transfer. This is also known as the First Law of Di�usion. The transfer

of particles passing a single region (rate F ) is determined by the concentration of particles C,

di�usion constant D, time t, over some distance x [10]. The negative sign indicates that particles

�ow away from areas of higher concentration.

If we assume that mass is conserved, this leads to the conservation equation [41],

∂C

∂t
= −∂F

∂x
. (2.5)

Combining this conservation of mass assumption with the First Law of Di�usion results in the

Second Law of Di�usion in one dimension, which is also known as the �di�usion equation� as

described above:

∂C

∂t
= D

∂2C

∂x2
. (2.6)

Extending Equation 2.6 to two dimensions, assuming anisotropic di�usion (not uniform in both

directions) along with linear terms for wind, we get an equation describing the rate of change of

concentration of particles under the in�uence of both di�usion and advection (wind),

∂C

∂t
= Dx

∂2C

∂x2
+ Dy

∂2C

∂y2
+ α

∂c

∂x
+ β

∂c

∂y
, (2.7)

which leads to a standard analytical solution consisting of Gaussian distributions,
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C(x, y, t) =
A

4πt
√

D
e
(− (x−αt)2

4Dxt − (y−βt)2

4Dyt )
. (2.8)

If we assume di�usion is uniform (isotropic) in the x and y directions, Dx = Dy = D., meaning

particles have a tendency to drift in all directions equally then:

∂C

∂t
= D(

∂2C

∂x2
+

∂2C

∂y2
) + α

∂c

∂x
+ β

∂c

∂y
. (2.9)

The wind constants α and β represent the corresponding wind speeds in the x and y directions.

The α and β terms in a more general solution with time-varying wind would be replaced by α(t)

and β(t). The solution of interest for this di�erential equation for a point release at x = y = 0, at

t = 0 is [11]:

C(x, y, t) =
A

4πtD
exp(

(x− αt)2 + (y − βt)2

4Dt
), (2.10)

with a single constant A due to the assumption of isotropic di�usion. In the case of anisotropic

di�usion Dx 6= Dy, and A would be replaced by two constants A1 and A2 for the x and y dimensions.

For �xed t = t0, the pro�le of concentration C(x, y, t0) along any line y = mx + b will have a

Gaussian distribution. If the concentration pro�le begins as a point we will see spreading Gaussian

distributions as time progresses. As a direct result of Fick's Law, the �ux in any direction is

proportional only to the gradient in that direction. If the di�usion constants are unequal, the

cloud will disperse an-isotropically, growing more quickly along the axis with the greater di�usion

constant. The characteristic propagation length along any axis will be proportional to the di�usion

coe�cient along that axis.

A common measure in environmental engineering for the boundaries of a plume is 4σ, that is

the boundary that includes 4 standard deviations of the plume material or 95% of the material

[11]. The rate of spreading is of interest later when we attempt to predict the location of a plume

at a future time, t ≥ t0. The width traversed in the x and y directions for a two dimensional plume

de�ned by the width 4σ undergoing pure isotropic di�usion (no wind) is given by:

L = 4σ = 4
√

2Dt, (2.11)

meaning the width of a plume increases as the square root of time t.

Using the above equations for concentration as a function of time at a given position, Equation
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L

Figure 2.3: Di�usion curves as time increases showing widening Gaussian distributions. A patch
of aerosol released acting under pure di�usion has these statistical distributions as time increases.
A width of L or 4σ contains 95 % of plume material and is considered boundary by our de�nition.

2.10, and the distance of spreading for a plume boundary, Equation 2.11, it is possible to construct

a series of equations that allow a group of sensors to invert sensor observations to �nd the source.

Assuming a single source located at position (x0, y0) which releases at time t = t0, the concentration

response curve seen at any sensor Sn in this region would be described by Equation 2.10 as c(x, y, t).

One simple way to invert for (x0, y0) from a group of N sensors S1,S2,...,SN is taking:

∂c

∂t
= 0

for equation 2.10 and solving this equation for t. Then plug this tmax back into 2.10. It can be

shown it is possible solve analytically for (x0, y0).

One interesting property of these tmax times for a network of sensors is the unique set of values

produced for a speci�c release point (assuming a single release). The di�erences between these

tmax values are unique to a particular source position, and it can be show through solutions to the

classic di�usion equation that two sensors are required to invert for a source location in 1D and

3 sensors are required in 2D. The problem with this approach is not knowing t0 for the release.

In addition this ideal analytical solution does not apply in most real world scenarios with highly

noisy or binary sensors.

The introduction of binary sensors creates the problem that precise concentration measurements

are not available, and inverting for source location based on algebraic systems of equations is not

possible. A binary sensor begins sending a �hit� observation on the rising edge of a signal, and

continues reporting a positive observation until the level drops below threshold. This ambiguity
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Figure 2.4: Based on the 2D analytical solution to the di�usion problem a �xed sensor has a
characteristic response to a pure di�usion event, as a function of distance from the source. The
curves in (a) show 3 sensors located at d=10,20, and 30 units from the source. For a �xed network
of sensors, the relative times between observed maxima are a function of the source location. The
response curve in (b) shows a typical noisy concentration response C(x, y, t) of a chemical sensor.
The level for binary threshold is set b.y the dotted line. Trigger-points A and B show boundaries
for the region of potential sensor activation.

produces the situation of not knowing when the concentration reaches a maximum, or if the signal

is rising or falling. This range of time that the sensor is active creates uncertainty in the release

point location, as portrayed in Figure 2.5. In an ideal solution groups of sensors could invert for

source location based on analytical geometry, but binary sensors produce a region of large error

and uncertainty about the potential point of release. This limitation leads towards a statistical

approach to the problem in the next chapter. Based on the binary nature of sensors, and the

inability to form a analytical solution to the inverse source problem the next section introduces

the notion of Bayesian statistics, and the tracking approaches used to solve the problem.

2.1.2 Wind modeling

With the introduction of wind the plume process becomes a combination of advection and

di�usion. Wind is the dominant force e�ecting plume motion, and many degrees of complexity

can be considered. Non-linear e�ects, turbulence, and barrier interaction would be included in a

more general model, but we will limit this model the �rst order e�ects of a linear wind and simple

advection. Under the assumptions of proper decorrelation lengths, wind can be assumed to be

uniform. Under its classical de�nition, the decorrelation length of a random process is de�ned

as the lag after which the correlation between two time instants is approximately zero [23]. For
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Figure 2.5: The introduction of binary sensors and noisy detection. in a network of three sensors
S1, S2,and S3. Binary detections de�ne two circles based on rising and falling edges of the detection.

Plume Source

Wind Direction

Plume Boundary

Mass Center

Figure 2.6: Forward plume model propagation is a function of di�usion constant D and wind
W , with wind determining the dominant direction. The ratio Pe = D

W , known as the Peclet
number, determines the width of the plume region. The Peclet number is a measure of the relative
importance of di�usion to advection. We wish to invert observations of the plume to �nd its source.

a wind process the value of decorrelation length determines the range over which wind can be

assumed uniform, and in our model this value is larger than the dimension of the simulation grid.

This means wind in our model we can assume uniform wind e�ects on all cells in the 2D region A

of the simulation.

The Peclet number measures relative strength of di�usion to wind. This ratio determines plume

width in our model. For materials with a higher Peclet number, di�usion is a more dominant factor.

A typical Peclet number is 1
10 , which is the value used for the simulations in this thesis. In this

case the force of wind is one order of magnitude more important than di�usion. For that reason,

the primary focus of our plume tracking algorithms will focus on wind dynamics and wind history.

The generation of wind data can be accomplished by making a Markov model where each wind

direction is represented by one state. The change of wind direction is equivalent to a transition

between states. This was the original model used in the thesis work. The problem with generating
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Figure 2.7: Forward di�usion process developed for this thesis based on di�usion and advection.
Three plume sources of di�erent initial concentrations started this simulation. Wind �elds for the
simulations are obtained from online database records obtained from NOAA, allowing the selection
of hundreds of weather station locations around the United States.
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Figure 2.8: Historical wind data collected from battery Park, NY.

such data is the di�culty in proving its statistical properties resemble real wind. In order to create

a more realistic model for plume behavior, real wind data can be integrated into a simulation if

the length scales and units are scaled to appropriate values.

Methods such as bootstrapping can be used to generate test wind data from small samples of

real wind data, however such large amounts of real time data are available, this method was not

required. Real wind data from thousands of weather stations are available from the NOAA website.

This data includes wind direction, speed, as well as temperature and other weather measurements

such as humidity. By downloading this data and selecting blocks of time, the real wind data can

be quantized from (0 − 360◦ ) into 8 directions in the simulation. The wind history vector Θ is

de�ned as the time series of wind directions observed at a sensor derived from the following data

sets. Spatial uniformity and decorrelation length scales for wind are typically 50− 200 miles, and

the scale of the simulation work is set to this distance for the great simpli�cation of assuming

uniform wind. Decorrelation length scale of wind indicates the distances over which the spatial

uniformity assumption is valid.

2.2 Statistical theory

As the previous section illustrated, ideal analytical expressions for plume concentration based

on di�usion and wind quickly lose applicability when binary sensors replace ideal concentration

sensors. Statistical modeling can estimate parameters that describe the phenomenon, but are not

based on physical models. In this section Bayesian estimation, tools from target tracking, and
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�nally process query systems (PQS) will be introduced as alternative statistical approaches to

solving the inverse location problem.

2.2.1 Bayesian state estimation

The goal of tracking problems is target localization. The unknown true state of the target at

time t, xt, may include position, velocity, and other parameters of the physical target. This target

can be measured by some sensor, and the observations at time t produce observations, zt. In the

case of a plume �target� the target state xt includes concentration for all the cells within the matrix

A for a release event de�ned by the plume boundary of 4σ. The set of all target states is de�ned

as a set XT ,where:

XT = {x1, x2, ..., xT }

is the set of all states, and based on a set of sensor observations, ZT , where:

ZT = {z1, z2, ..., zT }.

The best possible estimate of XT is desired, where an estimate of XT is de�ned as X̂T . Each

zt contains position and whether or not the concentration at t is above threshold for sensors (in

the case of binary sensors). There is a classic Bayesian formulation to this localization problem.

Bayes theorem relates the conditional and marginal probability distributions of random vari-

ables, and is a widely used result in probability. The probability for an event A conditioned on

a second event B is generally di�erent than the probability of event B conditioned on event A,

although there may be a relationship. Bayes theorem relates these two conditional probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
, (2.12)

where each term is typically known by the following terms.

• P (A) is the prior probability or marginal probability of A. It does not consider any knowledge

about B and is therefore termed prior.

• P (A|B) is the conditional probability, also known as the posterior probability, because it is

conditioned on B

• P (B|A) is the conditional probability of B given A
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• P (B) is the prior or marginal probability of B

In the application of interest we can adapt the Bayesian formulation by considering the observations

at the sensors over a time interval T as the random variable ZT , where the observation set ZT =

{z1, z2, ...zT }. This observation set ZT can be considered the observable on the true plume state

space, called XT . The sequence of states XT evolves over time, where XT = {x1, x2, ..., xT }. Based

on ZT estimates to the true state can be made, known as X̂T . Given an observation sequence ZT

what is the conditional probability with a certain XT ? Using the standard Bayesian de�nitions,

the problem components are:

• P (x) - the prior probability of a speci�c plume sate, independent of z

• P (x|z) - the conditional probability or posterior probability of a plume state given a certain

measurement

• P (z|X) - the conditional probability of a plume observation given a certain plume state

• P (z) - is the prior or marginal probability of an observation

• x̂t - our state estimate at time t

• xt - the true state at time t

The goal of this approach is to obtain a good estimate of the plume state X̂T based on a measure-

ment history ZT which is as close as possible to the true state XT . The tracking form of Bayes

rule states the probability of a given state x given the observation z [14]. The relationship between

a posteriori distribution, the a priori distribution, and the likelihood function is:

p(x|z) =
p(z|x)p(x)∫
p(z|x)p(x)dx

=
p(z|x)p(x)

p(z)
. (2.13)

2.2.2 Estimators

Given the observation set z1, z2, ..., zT , what is:

p(x|z1, z2, ..., zT )?

The purpose of an estimator is making this calculation, and many di�erent standard estimators

are used. A few of the most common estimators are described here.
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• MMSE: minimum-mean-squared error. This is a commonly used estimator in the standard

estimation theory. Given a set of observations z1, z2, ..., zT the MMSE estimate produces the

expected value or mean of the distribution p(x|z1, ..., zT ), which can be written as,

x̄ =
∫

xp(x|z1, ...zT )dx, (2.14)

where the MMSE estimator is the mean of the the so called posterior density.

• MAP : maximum a posteriori, maximizes the posterior distribution. It is derived the uni-

form cost function , and considers both information from the measurement and the prior

information about the state:

X̂T
MAP = argmaxp(XT |ZT ). (2.15)

• ML: maximum likelihood, considers information in measurements only:

X̂T
ML = argmaxp(ZT |XT ). (2.16)

A Custom Estimator

We desire a custom estimator for the plume state estimate that minimizes the probability of error.

Instead of including all observations at t, another alternative is selecting only the observations

believed to originate from a speci�c plume source. As opposed to an estimator that considers all

observations equally (such as the �uniform� or MMSE), this estimator �rst segments observations

into tracks to determine which observations should be included in the estimate. Once this step is

performed the assumption can be made that all estimators for nodes within the track correspond

to the same source. An estimate will be performed separately for each group (partition) of sensors

believed to belong to the same source. This estimate will be the second part of the 2-Step algorithm,

presented in Chapter 3.

Total Area of Detectability (TAD)

Figure 2.9 shows the distribution shapes for three cases of advection di�usion. In the �rst case

with no wind, the agent disperses in a uniform circular pattern de�ned by pure di�usion. Under

such conditions if a sensor in this vicinity has a detection, its estimator distribution will have

the identical shape, due to Bayes rule. That is, the probability distribution of an observation
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originating from points in the region of the sensor will have the same shape and size as the forward

di�usion distribution. The distribution will be centered around the sensor with a detection. In

the second case when constant wind is introduced, the same rule apples but now the forward

distribution forms an �ice cream cone� shape, where the intensity represents the likelihood that a

particle originating at the source will be located at various positions in the vicinity of the source.

The di�erence when wind is introduced is that the estimator shapes form a mirror image of the

forward distributions. This holds true for a wind series Θ in which the wind shifts.

The estimator region will be a mirror image of the forward distribution. This estimator region

boundary is determined by the threshold of detection, and the entire area of this estimator is

de�ned as the TAD, or the total area of detectability. Similar to the forward advection di�usion

problem, the shape of the TAD is determined by di�usion constant D and wind history vector

Θ. This means a source originating outside the TAD for a sensor could not have produced an

observation. Conversely, for a single detection and corresponding TAD the source could have

originated anywhere within the area de�ned by the TAD. Areas within the TAD having higher

likelihood values are more likely source locations for the event producing the observation.

Figure 2.10 illustrates the forward prediction of a hurricane track. This distribution is analogous

to the TAD, except the TAD is an inverse likelihood corresponding to events occurring in the past.

In the hurricane example, if a sensor detected the presence of a hurricane at one location, the TAD

for that sensor would estimate the likelihood of all locations from which the hurricane could have

originated.

Single Observation Estimator

A single observation, zt, can be used to produce an estimator based on Θ, the wind history

vector at t. Under the assumption that a single source produced the observation, the sum of the

area of the predictor is unity. The wind history vector is de�ned as the history of wind directions

observed at a point over the time range of observation history. The wind history vector is de�ned

as the set of values:

Θ = {θ1, θ2, ..., θT },

where each element of Θ represents a wind direction at a previous time. If these wind vectors θt

are placed tail to head in sequence, a sum of vectors represents the history of wind until present

time. Figure 2.11 shows the resulting estimators formed from a single sensor under di�erent wind

history vectors (Θ). An observation will produce a likelihood function in two dimensions, which is
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Figure 2.9: Estimator shapes derived from Bayes rule, showing probability of an observation
originating from points in the region. These functions are a superposition of series of solutions to
the forward advection-di�usion equation, but inverted in time.

Figure 2.10: Hurricane track expressing probability of landfall at future times [7].
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Figure 2.11: Inverse Plume geometry, a result of the di�usion and advection process run back-wards
in time � which produces the TAD (Total Area of Detectability). The sensor is located at (x=50,
y=50). The contour value indicates the probability that a detection at this sensor originated from
a point within the contour. Points outside the contour are below the threshold of detection. The
shape depends on wind history Θ and di�usion constant D.

based on the inverse wind directions θt observed at that node from t0 → t. This region represents

the likelihood that an individual zt originated at a given upstream location. In the likelihood

intensity plots, intensity represents this likelihood of attribution for zi . Probabilities are higher

along the axis of Θ, fading tangentially in a Gaussian distribution. Locations outside the TAD for

a given Θ and D have an intensity value (likelihood) of 0 (white in the plots).

Multiple Observation Estimators

When multiple sensors in a region have simultaneous observations they must be combined to

leverage all available information about the plume source. The most simple case of multiple

estimators is illustrated in Figure 2.12 which shows the superposition of two individual estimators
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to form a uni�ed estimator. The estimator functions for any number of multiple sensors can

create a combined likelihood map when they are superimposed, as seen in Figure 2.13. As more

zt observations are provided from sensor nodes, a greater degree of situational awareness develops.

The state estimate of plume source location, x̂t, can be updated and re�ned as more observations

arrive. The problem, however, is that without knowledge of the number of sources, a uniform

estimator in which estimators from all sensors are equally weighed must be used to calculate joint

probabilities. If this assumption of a single source is made incorrectly, the regions fail to be true

probabilities and instead represent only likelihoods.

By estimating joint probabilities between multiple sensors and di�erent TAD area, overlapping

regions within boundaries provide additional information. Figure 2.14 shows the case of three sen-

sors (A,B,C) with corresponding TAD regions with overlap. By calculating the joint probabilities

of two or more TAD regions we can calculate joint probabilities of a plume origin with higher

certainty. If multiple sensors have detections from overlapping TAD regions, we expect a lower

probability of false detection for all current observations. For the sensors A and B, and the plume

origin x:

P (A,B|x) = P (B|A, x)P (A|x) (2.17)

The chain rule of conditional probability gives the following results for three sensors (with

corresponding cones) A, B, and C:

P (A,B,C|x) = P (A|B,C, x)P (B|C, x)P (C|x)) (2.18)

And this extends into a general result for k cones:

P (A1...Ak) = P (A1|A2...Ak)P (A2|A3...Ak)...P (Ak−1|Ak)P (Ak) (2.19)

Observation Correlation

In the case where more than one source may exist, we not only wish to estimate source location

from a set of observations, but also to make estimates for which groups of observations belong to

the same source. This process is known as track building. Although a sensor may be activated by

33



Figure 2.12: Belief map generated when estimators from two sensors are superimposed with equal
weight .
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Figure 2.13: Superimposed sensor estimators for two networks of sensors. In (a) no wind, and in (b)
with wind. The unidirectional likelihood distribution in (a) results from no wind. Because several
sensors are positioned within the estimators of neighbor nodes, connectivity relationships can be
created. The estimators also allow the calculation of connectivity values between neighboring
sensor nodes.
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Figure 2.14: Combination of observations A B and C as their estimator regions overlap.
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agent from multiple sources at the same time, it is possible to create a correlation function which

estimates the probability that two independent observations are derived from the same target

(source). The correlator function is based on the same principles as the estimator, but a value is

calculated for two sensor node positions. Figure 2.15 illustrates the calculation of a correlation

value between two sensor nodes. By estimating the previous path of a current detection at a

sensor node, we determine if two activated sensors are located in the propagation path of an

evolving plume. If the calculated correlation value is above threshold, an association is formed.

The �strength� of this association is given by the correlation function which operates on two sensor

locations and their corresponding wind history vector Θ.

When observations are available from the sensor network, the current wind vector history for

the relevant node is weighted with the observation. Thus, a large number of observations at a

particular node gives more weight to its particular correlation value with another node. Once a

series of these correlation functions are calculated against neighbor sensor nodes, associations can

be formed between nodes. These associations allow the creation of �tracks.� A track is de�ned as

a collection of nodes all believed to produce observations from the same source.

Each track corresponds to a partition of the total observation set, and each track can be used

to calculate an independent state estimate, also called a map. This map represents the likelihood

of source locations that produced a collection of observations. When a large number of sensors

are available in the region of interest, as N increases, the map converges to an approximation of

the true sources. The cumulative probability of a track is the product of all the correlation values

within the track.

For example for a track containing three sensor observations (A,B,C) with associated proba-

bilities P (B|A)=.5, P (C|B) = .1, there are two sensor associations between the three points, and

a cumulative track probability of .5 × .1 = .05. This track probability assignment method can be

applied in the multiple hypothesis tracking method as a way to rank competing hypotheses that

explain the same set of sensor observations.

2.2.3 Multi-target tracking theory

The uniform estimator can be improved with advanced data association (DA) techniques such as

multiple target tracking (MTT). MTT methods are well developed in the literature, and originally

found use in applications for radar target tracking [44]. Collections of observations are partitioning

into tracks believed to represent the same target. Figure 2.16 illustrates observations collected over
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(a) (b)

Figure 2.15: An association is formed between two nodes when the correlation function exceeds
threshold. This calculation performed between two nodes determines whether a node is appended
to a track as in (a). In this case a track is formed in (b) consisting of two nodes.

(a) (b)

Figure 2.16: In (a) the same observation set produces three di�erent hypotheses for observations
from two targets (solid and dotted lines) collected at �ve time-steps. In (b) new observations
(gray) may be assigned to existing tracks (red), or initiate new tracks.

�ve time-steps for two targets where three di�erent track combinations are possible. By maintaining

multiple tracks as explanations for the same observation set, observations received at a later time

can be included to alter the ranking of these track likelihoods.

Multiple possible assignments of observations also creates the problem of exponential growth

in hypothesis sets , where a hypothesis set is one particular collection of tracks. This large growth

rate in hypotheses must be dealt with using pruning methods. MHT (multiple hypothesis tracking)

handles this combinatorial growth of possible track assignments via accurate pruning and track

maintenance. In Figure 2.17 the process of MHT contains a step known as track prediction. In

this step, currently existing tracks are estimated for future time-steps in order to facilitate optimal

observation assignment from new observations. Traditional target tracking for systems such as

airplane radar use a technique known as Kalman Filtering, but this thesis develops a custom

predictor tailored for plume tracking.
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Figure 2.17: MHT process, and steps. Data collection, gating, track maintenance, and association.
Track Prediction as a part of the MTT algorithm: assignment of new observations to existing
tracks or the decision to create to a new track requires track prediction based on the last known
observations.

2.2.4 Process Query Systems (PQS)

The process query system approach developed at Dartmouth College is based on multiple

hypothesis tracking techniques introduced in the previous section. PQS is designed as a data �lter

that identi�es the existence of models in a data stream, similar to the classic notion of �ltering. In a

�ltering problem the goal is to accurately match an observation sequence with a model, recovering

and identifying the presence of that model in the data. In this �lter we desire high correlation even

in the presence of noise, and a low likelihood of a match when the model is not present in the data.

The challenge of a PQS system is the creation of a generic framework for disambiguation, detection,

tracking, and state prediction of multiple discreet and/or continuous stochastic processes in noisy

and lossy environments [1, 12].

Instead of domain experts spending large amounts of time identifying the presence of a process

and data, expertise can be spent designing models for processes � which then are continuously
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compared to arriving data. Examples of process models include Internet worms, social network

activity, and physical target tracking such as humans or �sh [1]. The plume tracking application

is simply one more application of the more general problem of detection of a stochastic process.

The approach is a good match for the plume source detection problem for the following reasons:

• lack of continuous observations,

• noisy observations,

• potential delayed or missed observations from simple sensors,

• the presence of multiple competing hypotheses,

• and the real-time nature of the plume problem.
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Chapter 3

The problem and solution

�The true logic of this world is in the calculus of probabilities.�

-James Clerk Maxwell

3.1 Problem de�nition

3.1.1 Graphical representation of problem

The illustration of graphical conventions used to visualize plume location problems are located

in Figure 3.1. The components used in the simulations include plume sources, agent sensors,

descriptions of the plume agent in a region, tracks which are groups of sensors, and estimates

about the agent � in the form of likelihood maps. The following graphical symbols and values are

used:

• Region A. A is m× n area that may contain plume sources, sensors, and wind. This is the

total area under surveillance, and contains m× n cells.

• (+) Plume sources. A plume source may be centered at any cell Aij , and with an arbitrary

number of cells. At each time step plume material is added to an area of width w, centered

about Aij .

• (o) Binary sensors. capable of detecting agent from plume source (+) located at one cell Aij

within A.

• (*) Filled circle indicates an activated binary sensor
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(a)

(b) (c)

Figure 3.1: Graphical conventions for sources (+), sensors (O), sensors with detections (�lled O),
and tracks (lines). S(A)state matrix in (a), and M(A) likelihood map of region A in (b).

• S(A), the state of A , is de�ned by the concentration of all cells within A, values are indicated

by a blue concentration gradient.

• M(A), a likelihood map of A, indicate likelihood of sources as seen by some set of active

sensors. This map will change based on the method used by the sensor network, and which

active nodes are used for the estimation. M(A)intensity is indicated by a green concentration

gradient.

• Tracks are a clustering of active sensor nodes, believed to detect the same event. Each track

has a di�erent color and consists of lines connected between sensor nodes members of a the

track. It may be linear or have a tree structure.

3.1.2 Formal problem statement

Let A be a two dimensional area, A ⊂ R2 , discretized into a regular grid of m×n cells. De�ne

the state of A at time t, St(A), as a matrix containing the concentration of an airborne agent in

each of the m × n cells at a given time t. Each cell within A is indexed by (i, j) , where i and j
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are the column and row indices of the cell. The concentration for a speci�c cell at time t, Ct(i, j)

is de�ned as the average mass of agent per unit area in the cell. Time is discretized into uniform

intervals of length ∆t, where k indicates the kth interval of time. We assume k ≥ 0.

tk = tk−1 + ∆t (3.1)

= k∆t, (3.2)

optimal

for k ≥ 0.

Next we go about modeling the addition of plumes to A with a release matrix, R. This matrix

R serves as a perfect record of all plume releases that occur in A during a time interval of interest.

Assuming we do not know the time and location of the release events a priori, the goal becomes to

reconstruct RT as closely as possible. In this model we assume each cell within R is binary. This

binary release matrix Rtk
represents the state of �release� or �no-release� for each cell (i, j) in A at

time tk.

Rtk
(i, j) =

 1 for all cells in "release state" at tk

0 for all cells in "no-release state" at tk

(3.3)

The set RT is composed of all available Rtk
matrices and fully describes all releases in the time

interval 0 → T . Sources can oscillate over time, transitioning between the �release� and �no-release�

states, creating pulses of agent over time. Each cell has an independent probability of being in the

�release� state.

In reality the sequence of states RT is hidden from observation, but we estimate RT as closely

as possible. Knowing RT or at least a close approximation of RT leads to the set of all plume

release sources within A within time 0 → T. More advanced models of R could include a higher

number of states for each cell.

When a plume is released within A, the agent is released into cells by adding concentrations to

release points. A plume may have an arbitrary size, and be released into any number of cells in a

region. A release incident somewhere in A at tk is modeled by adding an integer amount of mass

to cells of the previous state Stk−1(A). The size of an incident is determined by the number of

cells that are injected with agent, as well as the magnitude of agent added to each of the a�ected
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Figure 3.2: Finite state of each cell (i, j) exists in neutral state or plume emission state. Green
dots represent the emission state, empty dots represent neutral state. The release matrix RT is a
set of all the possible release points over a time interval T .

cells. This model allows an incident to be of low concentration but covering a large number of

cells, or of high concentration and very localized. Across time, events may be �continual release�

where release point cells are injected at every time interval, or a �limited release� where injections

occur at a single time tk.

The eventual goal of this work is to determine Rtk
∈ RT for times in which a release occurred.

That is, we will estimate values (i, j) and t for which Rt(i, j) = 1. R(i, j) is the release history

over all available time for a speci�c cell, whereas RT is the entire release history over the entire

m×n space until current time T . St(A) is a function of its initial state S0(A), sequence of release

states RT , as well as the physical processes of di�usion and advection operating on St, denoted

F (St). Next we provide a more detailed description of the process F (St).

Evolution of S(A) dynamics equations leading to F (St)

Next we develop a model for the evolution of S(A), and dynamic equations leading to F (St),

from �rst principles. Given St(A), St+1(A) is determined by the physical processes of di�usion and

advection (wind). Before tackling the inverse plume problem a mathematical understanding of the

forward di�usion process is needed. This forward model provides simulated data of di�usion events

until actual �eld data can be collected for solving the inverse problem. In addition, developing a

forward model and running simulations provides fundamental insights into the characteristics of
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C(x,0)=0

C(0,t)=Cs

Figure 3.3: Boundary conditions used for numerical solution of advection-di�usion equation

the di�usion process.

At each time step, S(A) evolves according to the di�usion of all particles within A. This is

achieved with a forward numerical approximation of the di�usion equation with a central di�erence

approximation. This means the values in a cell at the next time iteration are a linear combination

of all the neighbor cells at the previous time-step. In order to solve the second order Fick's Law

with numerical approximation we require one initial condition and two boundary conditions. Fick's

Law can be solved under two basic conditions: in�nite source di�usion and limited-source di�usion.

This simulation forward problem can approximate either case. In the in�nite source case material

is released from the source continuously, whereas in the limited-source case material is only released

during an short interval of time.

Using these boundary conditions, the agent will disappear when it approaches the edge of A.

The in�nite source di�usion boundary conditions are:

C(x, 0) = 0

C(0, t) = Cs

C(∞, t) = 0

In addition to the di�usion process, a uniform wind force Θ is applied to A at each time step

which is uniform in direction and magnitude across A. The physical process state evolution function

of S(A),F (S), can be divided into these two components with relative magnitude D for di�usion,

and Θ for wind. As Θ increases in magnitude, the relative importance of di�usion decreases. A
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typical value of the ratio θ
D = 10. This ratio is known as the Peclet number, and is unique for

di�erent materials and gases.

Θ may change over time in direction or magnitude, approximating a shifting wind. This

means St(A) at an arbitrary time evolves as a function of St−1(A) as well as Θ and D. St(A)

is also determined by all the previous injections of chemical into A by the sources. F (S) is the

combination of the physical processes of wind (a linear additive constant) and the di�usion model

developed above. This complete approximation of A and its time evolving state S(A) will serve as

our approximation of a region A , where F (S) is the physical process model, and R is the release

state.

St+1 = F (St) + Rt+1. (3.4)

The introduction of a realistic wind time series in simulated data is critical for estimating real

world conditions. Historical wind data from 1991-present is available on the Internet from the

National Weather Service. Stations are located on waterways, buoys, and land stations. Typical

continuous wind data is sampled every 6 minutes and includes direction, speed, as well as tem-

perature and humidity values. By taking advantage of this large preexisting data set in a large

number of geographic locations, the tracking-based approach can be tested with urban, ocean, and

open space wind conditions.

Description of sensors and observations

This area of interest is populated with sensors, which report concentration at their location

and local wind. More speci�cally, A will contain some number of sensors N , where in general

N < m× n. Each sensor within A corresponds to one cell located at position (i, j) . Each of these

N sensors within A reports an observation Zt at time t whenever it detects the released agent at

a concentration above some predetermined threshold Cthresh. For each sensor observation, Z=

(x, y, c, t, θ, D) , which consists of location (x, y) , concentration ct at time t, absolute time t,

wind direction and magnitude θ , and di�usion constant of the agent D. Z(xi, yj) corresponds

to all the observations available from a speci�c cell (xi, yj) over all time. Sensors will report a

series of observations over time to a central processing location, thus producing a time sequence

of observations ZT , which is the set of all available observations up to the present time T . An

individual sensor observation, Zt(i, j), is de�ned by:
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Figure 3.4: Time de�nitions in our model

Zt(i, j) =

 (xi, yj , ct, ¯θt, D) ct ≥ Cthresh

∅ ct < Cthresh

(3.5)

Problem: Given ZT , what is the probability of ST ?

Given such a sequence, ZT , we intend to estimate P (ST |ZT ), where S is an arbitrary state at

time t, with

t0 ≤ t ≤ T.

In the case where t < T this is a �ltering problem, operating only on currently available

observations. This allows estimation of St(A) at any arbitrary time prior to the present, and an

approximation of conditions that led to the current ZT . We desire to know St for times near times

within Rt in which Rt = 1 (releases generated at Rt). The state St at the time of plume release t

within R is an approximation to the source location for R(i, j). By estimating St(A), we estimate

when and where releases occur. It is also possible to recover t0 for a particular release � that is, the

time of initial release. Another possibility is to predict future states of A, that is estimate P (ZT |S),

where t > T. In this region of time, the problem is posed as prediction. These estimations of S(A)

have the ability to predict both forward and backward in time from the current observation set

ZT .
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Figure 3.5: Formulating the solution of the Plume Problem with appropriate variables
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3.2 Observation correlation in target tracking

A purely analytical solution to the inverse source location problem is not realistic, and we

therefore seek to form likelihood associations between sensor observations. Instead of attempting

a numerical solution to the inverse advection-di�usion equation with observed sensor concentra-

tions, statistical likelihoods are estimated between sensor nodes. For example, given a positive

observation at one sensor, what is the likelihood that the event triggered at this sensor also trig-

gered its neighbor sensor? By estimating or assigning some likelihood value of connectivity between

sensor pairs, a connectivity map can be built.

The standard Kalman predictor used in target tracking is not designed for large continuous

mass; we require a custom predictor based on simple binary sensor information [8]. The percentage

coverage for an area can be seen as the ratio between the TAD and the total area of interest:

P =
∑

Ai

m× n

for an area of size m×n. The area
∑

Ai is the sum of the TAD areas based on detection threshold

and wind history. This is the probability of detecting a random source located within A.

We present a method for monitoring plume sources with a MTT-like algorithm, maintaining

tracks from collections of individual observations, and tracing observations back to their origin.

Using the concept of tracks we can select an optimal subset of sensors, count number of sources,

and deal with crossing paths of plumes. Unlike the canonical MTT problem which utilizes Kalman

�ltering, we can measure all the forces having an impact on the plume structure, whereas with

traditional MTT the target may have an intelligent unpredictable component such as a pilot control

[44, 4, 47]. Knowing the wind history vector Θ for each of the N nodes, the substance of interests

di�usion constant D, and the relative location of all the nodes in the network, we may calculate a

plume predictor value for each new observation. Each observation zi at sensor n has a probability of

correlation for being observed at a di�erent sensor. The plume predictor estimates this probability,

and uses the value in observation assignment to tracks, or track initiation. Essentially we ask, what

is the probability that zi and zj originated from the same plume event?

The goal is to �nd source locations and rank their likelihoods, which will allow the estimation

of the number of sources. How well do current observations ZT in the sensing network correlate

to the same original event (St0)? We propose the monitoring of a two dimensional area (m × n)

with a �eld of N stationary sensors, where N is large but much less than m× n.
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Figure 3.6: Data association and plume correlator for MTT

In our model, wind and di�usion across the the two-dimensional space are assumed uniform.

Our model of a chemical plume will consider only the di�usion constant D and wind W , which can

be observed at each sensor of known location. Given the observation of a known chemical at the

sensor allows the sensor to look up D . Because the wind medium can be measured at each node,

the sensor network has complete knowledge of the only two parameters a�ecting plume dynamics

in our model.

The goals of our approach include:

• estimating the plume source location,

• determining plume tracks,

• having few false positives,

• having a scalable algorithm,

• and having near real time tracking ability.

3.2.1 Role of gating in MTT

The goal of this work is not improving upon MTT itself, but developing several plume predic-

tors, which can then be inserted into existing implementations of MTT algorithms such as PQS
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Figure 3.7: The role of the correlator in MTT is observation assignment. Given the same set of
observation scans multiple track permutations and hypothesis sets are possible.

[44]. The function of this plume predictor is the statistical correlation of individual observations,

and the assignment of new observations to tracks. This approach supports the eventual develop-

ment of multiple high level models of a dispersing chemical plume. High level models will enable

the development of end users to submit plume query process models. Once these models are

developed, several will be simultaneously submitted to a PQS framework.

We de�ne a plume as a region with a center of mass, with ideal observations expected to be

based on the di�usion equation and distance from the plume center. In practice however, plumes

split into separate discontinuous �laments - moving in a chaotic �ow regime. The plume may

generate low readings near the source, or intermittent high concentration readings to sensors at

great distance. The use of Gaussian descriptions for atmospheric dispersion models can give rise

to very misleading estimates of concentration �elds. A plume is frequently not well dispersed, but

rather consists of a long sinuous volume of material. As a result, a detector with a fast response

time will report a series of relatively short bursts of high concentration adjacent to long intervals

during which the concentration is close to zero. Detections are essentially binary in nature. This

property of plume dispersion called intermittently results in concentration readings of zero for

many samples, even for sensors near the source [30].
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Figure 3.8: Source separation problem with two sources on the left, and constant wind to the right.
The two tails combine to form a third peak concentration area which is blowing to the right. The
objective of this sensor �eld is to correctly identify the presence of exactly two sources, however
without sensor assignment to tracks this problem is very di�cult.
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MTT for plumes addresses the problem of assigning new observations to existing track hy-

potheses, or new hypothesis creation. (data association). Kalman or Bayesian �lter predictors

assume a strict temporal arrival order of observations and may have to throw out late-arrival data.

The tracker may have have to repeat calculations to integrate the late-arrival in prior calculations,

thus degrading performance. MTT maintains a ranking of data associations, based on likelihood.

MTT su�ers from combinatorial explosion in data association, however additional knowledge about

target kinematics or the environment can help prune hypotheses [51].

3.2.2 Source separation

Figure 3.8 demonstrates the classic problem of source separation in the domain of plume track-

ing. This example shows a possible scenario in which simple peak detection can lead to a totally

erroneous estimate of source location, due to the superposition of two sources at a downwind loca-

tion. One major advantage of the tracking-based technique is the ability to separation observations

into partitions which minimize the e�ect of such superposition, essentially allowing for the detec-

tion of plume signal in a highly noisy environment. Track formation and the 2-step algorithm are

not possible without MTT techniques.

3.3 State estimation

3.3.1 Plume state space estimation

State space likelihood maps are generated based on a backward propagation of likelihood from

each sensor node having an observation at the same instant in time. As time evolves the likelihood

map is updated, and without tracking we assume an equal weight for each observation. We assume

that each sensor has knowledge of the entire wind history since t0, where to is de�ned as the

beginning of the simulation. Sensor backward propagation is performed from ti → t0, where ti

denotes the current time step. Therefore sensors having the most recent observations will have

likelihood maps enclosing upwind sensors, since they propagate their predictor functions for a

longer duration than the initial sensor observations. This update process leads to likelihood map

re�nement in most cases as new observations arrive downstream. Likelihood maps can be calculated

for any ti, however the �nal map is used for comparison which allows direct comparison between

likelihood maps based on the same number of time steps. In general the �nal time step likelihood
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Figure 3.9: Track de�nition used in this thesis. Observations believed to originate from the same
plume event are assigned to a single track. In this Figure solid circles indicate sensor observations,
and a single plume source is released from the top center of the grid. Most observations in this case
are correctly assigned to a single track. The track objective is the partitioning of all observations
into subsets which contain the most information about a single source. Once an inverse likeli-
hood function is applied to this subset of observations it will in general produce a more localized
likelihood map.
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Figure 3.10: Data association process in the 2-Step algorithm. New observations are compared to
all leader nodes with their unique predictor functions. An assignment to a track is made if the
leader node location evaluated on a predictor function produces a score above threshold.
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(a) (b)

(c) (d)

Figure 3.11: Growth of 2 tracks over time from 2 sources at a single release time. At the end
of simulation run, sensor nodes within each track will form a single likelihood map, with the
assumption that all members of the track are observing the same source. This partition of the
entire collection of observations produces improved likelihood maps. Tracks evolve in the sequence
(a), (b), (c), then (d).
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Figure 3.12: Likelihood map M(A) for for 2-Step estimator compared to uniform estimator.

map for a trial is the most accurate.

Joint probability, likelihood and state estimation

Likelihood di�ers from probability or joint probability, and we use the concept of likelihood

rather than a strict de�nition of probability in the state estimation procedure. This likelihood

(not a probability since the assumption can not be made that all detections are coming from the

same single source) estimates how likely a current observation originated at a location upstream.

In the case of no wind this estimator is spatially uniform. A likelihood map M(A) as seen in

Figure 3.12 illustrates the predictor used in the 2-step algorithm as a custom type of estimator.

In this custom estimator an observation set ZT is partitioned in a partition ω, which attempts to

assign only observations which originate from the same source. This is unlike a MMSE estimator

which does not �rst perform the partition based on tracks. The attempted result is a likelihood

estimation only for observations belonging to the same source. The decision whether or not to

include an observation in a track is performed by a correlator function, explained in the next

subsection.

3.3.2 Correlator

The purpose of correlator function is to assist in accurate data association (DA) between

observations. The basis for this function is Bayes rule, derived in the previous chapter. Given

an observation zt what is the probability of a given xt. This can be viewed as in inverse solution

to the forward advection-di�usion problem, since we are estimating source locations from plume

55



observations. Assuming the Bayesian nature of such a source and observation system, these inverse

likelihood areas are calculated with an inverted wind history vector Θ′ for a particular location

(X, Y ) . For example if a sensor measures a wind sequence:

Θ = {20, 23, 21},

where these measurements are in degrees - the inverse wind history, denoted Θ′, would be:

Θ′ = {21, 23, 20}.

The inverse probability distributions are calculated by solving the forward di�usion equation with

Θ′ instead of Θ. The identical values for wind speed, and di�usion constant D must also be used.

This analytical method requires using a 2D evaluation function operating on the correct linear

superposition of exponential functions of the form:

L = exp(−(
x− b

a
)2 − (

y − c

a
)2), (3.6)

where L is the likelihood value, b is xcntr c is ycntr and a is time. A sequence of wind at a sensor,

when inverted and substituted into this equation with the correct di�usion constant will produce

a Gaussian region proportional to the probability that an observation originated from that point.

The more elements included in Θ, the greater the number of functions to added, one exponential

for each time step before the present time.

By providing the relative X and Y locations of the 2 sensor nodes in question, and then inserting

the inverted wind sequence parameters into Equation 3.6, a correlation value is produced for these

two positions. If the second sensor location is de�ned as location (x, y) = (0, 0), Equation 3.6

simpli�es to:

L = exp(−(
x

a
)2 − (

y

a
)2),

where x and y represent the relative location of the second sensor. The sensor with the current

observation is de�ned as the XY origin.
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3.4 Optimizing location with 2-step algorithm

In this section the 2-step algorithm is introduced and explained as a more e�cient type of

estimator. For a description of estimators see section 2.2.2. The �2-step algorithm� consists of:

1) Assigning optimal observations to tracks

2)State estimation of source location for each of these tracks independently

Collaborative localization

Collaborative localization of target sources and tracking have the goal of making a good estimate

of the target state XT based on a measurement history ZT . One popular method applied in sensor

networks is known as sequential estimation. Typically the measurements z are not all available

at once, but must be updated continuously over time. This method is applicable to the plume

tracking problem in a sensor network since a dispersing plume will activate a sequence of sensors

over time.

A group of sensors within a network assigned to creating and maintaining the belief state of a

plume source over time will be called a track. In practice this collection of sensors has overlapping

coverage of the state estimate of the plume source over some span of time. As observations arrive

over time the belief state is updated based on observations from each member of the track. When

multiple sources are present two scenarios are possible:

1. Sources are far apart and their tracks are processed by multiple collaborative groups working

in parallel.

2. If plume regions cross, their belief state estimates may overlap, and the collaborative groups

of sensor nodes are no longer distinct. The sensor measurements in the region of overlap may

now be associated with either of the two tracks.

Track formation

The �rst step of the 2-step algorithm is a rule based procedure for track formation. Correlation

values are calculated between current sensor observations and sensors with current associations to

tracks. Depending on the rule, single or multiple nodes within each track may form associations

with the new observation. In the most simple track formation rule, the track is linear, and only

track terminus nodes are used for correlation value calculations with new observations. In the

more sophisticated track formation rule, mesh or tree structured tracks are allowed in which
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Figure 3.13: Sensor selection in a track. When new observations are added to the track they are
used to update the state estimate. The estimation task here is to localize a stationary plume source
labeled �+�. Circles represent sensors, and �lled circles represent sensors whose measurements
have already been incorporated in the state estimation. (a) State estimate after incorporating the
leading sensor which has �rst detection. (b)-(d) State estimate after incorporating each additional
measurement from a selected sensor.

58



new observations perform the correlation calculation with all node members of a track. For the

preliminary experiments the following procedure is used for assignment of new observations to

tracks, and the track building process. Later in chapter 5 a method will be developed that is

useful when continuous track initiation is required.

Step 1: Track formation steps

• Track Initialization - Within the �rst 25 iterations of simulations all new observations create

tracks. The terminal node on track is designated leader node.

• Data Association - All new sensors with observations calculate a likelihood function based

on wind history. Correlation function evaluated at all leader nodes.

• Track extension - Observations that were associated in DA step become the new leader nodes.

• Track termination - The track is terminated once simulation ends or no new associations

within cuto� parameter. Track outputs sent to Step 2

• Likelihood map - Each track sequence produces an individual likelihood map

Step 2: State Estimation An example of step 2 is illustrated in Figure 3.14. In this

example only 4 sensor observations are used to form a belief map. The other observations in the

sensor network are not included for the state estimation phase of the 2-step algorithm. With the

progressive update of the state estimate, the estimate of the source location likelihood generally

improves as new observations are associated to a track. This will be observed as higher and sharper

regions near the true source location.

The motivation for separation of clustering and estimation steps is reducing the computational

demands of calculating predictor functions for every sensor with an observation in the network.

By selecting only nodes expected to return high information value we reduce the computational

requirements, and also the accuracy of the likelihood maps generated. We expect performance

improvement when this algorithm is applied compared to the uniform summation of the belief

maps for all sensors with detections at a given time step.

Another bene�t of �rst assigning observations to tracks is a convenient estimate of the number

of plume sources present in the region. As sensor density approaches in�nity we expect the number

of tracks to equal the number of unique plume sources. The following chapter presents the results
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Figure 3.14: Gradual state estimate update with 2-Step algorithm - re�ned likelihoods as more
observations added to the track in the order ABCD. Final update of estimated source position, as
sensor data is aggregated along the path ABCD.
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from a large number of experimental trials designed to demonstrate quantitatively the advantages

of using a tracking based approach for plume source location.
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Chapter 4

Plume simulation framework

4.1 Introduction

This chapter describes the simulation system and the experiments used to evaluate the tracking

based approach to the plume source location problem developed theoretically in Chapter 3. The

algorithms proposed in this thesis are not constrained to a particular laboratory setup. Initially a

hardware based sensor network was planned with the sensing modality of semiconducting gas de-

tectors for water vapor. However, it was soon evident that the e�ort required for a �eld experiment

would detract from the quality of algorithm development.

For this reason the experimental platform was shifted to a strictly simulation-based computa-

tional experiment. The software experimental platform of the LabVIEW graphical programming

environment is an industry standard for data-acquisition and signal processing. The plume track-

ing algorithms, forward di�usion scenarios, and analysis routines were developed in the LabVIEW

graphical programming environment. The simulation runs with the National Instruments run time

engine, and is also compiled as a standalone executable. This programming language allows for fast

development time, quickly produces a GUI, and highly reusable code. Most signal processing algo-

rithms, numerical analysis routines, and advanced statistical functions are included in the system.

LabVIEW has been traditionally used for data acquisition and signal processing, but we feel it is

an excellent simulation environment for rapid prototyping. The free run-time engine (similar to

JAVA) allows easy application distribution. In addition any function from MATLAB can be called,

and any LabVIEW vi can be compiled into a MATLAB mex �le or dll. LabVIEW was originally

selected for its renowned interfacing with sensor network hardware, and the obvious next step of
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experimental work would involve adding physical data to the existing system.By developing the

simulations in this programming language, future hardware �eld studies could be easily integrated

with the existing algorithms. This chapter is divided into the following sections:

1. Software Implementation

A description of the simulation system design explains the hierarchy of the simulation system.

The algorithms for representing the simulation system are described and divided into these

modules:

(a) Di�usion and wind. These algorithms perform the forward plume data generation.

Wind data is based on �les downloaded from historical records for real locations.

(b) Sensing. The binary sensor network detection of plume material and generation of

observations.

(c) Observation Correlator. Performs data association between observations received in the

sensor network.

(d) Tracking. Given the output from the observation correlator, observations are partitioned

into tracks believed to be produced by the same plume event.

(e) State Estimation. Once tracks are formed, the inverse advection-di�usion process is

applied from each track (collection of sensor locations) to generate a state estimate of

plume sources.

(f) Scenario Generator. This module controls batches of experiments, allowing a user to

design a large series of experiments with custom input parameters such as numbers of

sensors, sensor placements, tracking parameters, and wind series.

2. Single release time

The �rst collection of experiments had the goal of testing the performance of the system as

a function of wind variation and sensor density. To perform this evaluation, a static network

of sensors forms tracks, where each track corresponds to an estimate of a unique source.

In this series of experiments track initiation occurs only in an initial time window of the

simulation. This assumption greatly reduces track maintenance complexity. In addition, all

plume sources are released at the beginning of the simulation. Tracks are assumed to be a

line of single observation points, where only the sensor node with the data association value

is chosen at each step.
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3. Continuous release times

This enhanced series of experiments required considerable upgrade to the algorithms devel-

oped for the Single Release phase of experiments. The assumption of simultaneous plume

release times was removed, demanding the introduction of continuous track initiation. With

the need for continuous track initiation additional methods for track pruning, ranking, and

data association were required. An arbitrary number of plume sources could be released at

arbitrary times. The de�nition of track is expanded to include branching, where tracks can

have a tree structure. These experiments were designed to show the successful identi�cation

of plume sources released throughout the simulation.

4. Performance metrics

A number of metrics were developed to quantify the performance of tracking for the single

time release and continuous release experiments.

4.2 Software implementation

4.2.1 Di�usion and wind

Overview

The di�usion module performs the forward advection-di�usion operation in the simulation. In

our forward simulation the algorithm uses the boundary conditions: concentration for all t is

set to zero at the boundaries, the initial concentration values in the space are set by the user.

Concentration values can be added throughout the simulation to represent sustained releases of

di�erent types. Three types of contaminant sources are possible in the simulation: limited source

in which there is a one time release, constant source in which additional releases occur from the

source at every iteration, and arbitrary releases in which an arbitrary source capable of being on

or o� at any time during the simulation.

The forward simulation implements an approximation to the center-di�erence solution of the

advection di�usion equation, with a typical grid size of m = 250 and n = 250. The result is a two

dimensional spreading of material in an approximation of the normal distribution centered at a

�xed point, with a linear term added for wind. (We assume a uniform wind �eld in the region A).

Adding Plume Agent to A

A release is centered at a cell Aij and represents a plume source. Depending on the magnitude

64



of the release p, a rectangle of cells within A receive concentration values of p at certain times

when the source is releasing. The release centered at the cell Aij a has a width 2w, where w is

the distance between Aij and the edge of the square release region. Its magnitude of p, is added

to the the range of cells de�ned by:

Ai−w,j−w : Ai+w,j+w

and will be set to a value of p at the initial time-step. For later times the value p is added to each

of the cells. All releases are assumed occur in a square of size 2w×2w. At each future time step in

the simulation the value p may be added to Aij , depending on the release type. For a continuous

release event a value of p is added at each time-step i where the total number of time-steps is

determined by the length of the wind array Θ, where Θ = θ1, θ2, ..., θN is the wind-vector. For

an arbitrary release, de�ned by the plume source matrix M , material can be added according to a

custom function, where the release point is either on or o� for every time i in Θ.

Di�usion and Wind

During each iteration i of the simulation, the di�usion operation is performed on the entire matrix

A based on the di�usion constant D. The numerical approach using a standard centered-di�erence

approximation was selected over a random walk particle method for reduced computation. An

analytical solution was avoided due to the complexity introduced by potential wind shifts at every

time step. Following the di�usion approximation operation smoothing function, all cells Aij are

shifted at time i according the current wind value by indexing Θi. The linear wind force is applied

by rounding the wind direction in degrees (0 − 360) into 8 possible directions and shifting all

concentrations within A in this direction. By quantizing wind into 8 directions a simple shift is

applied to the matrix A.

4.2.2 Modeling of plume observations

For each time step the sensing module compares sensor locations (i, j) to the concentration

values in Aij . If above threshold a �hit� is recorded and the observation is passed to the tracking

module. The sensor has a range R in which it will search for a cell above threshold. This value is

normally set to a range of 1 cells, de�ning a sensor as a square region within A of size 3× 3 cells.

If any cell within the 9 cells is above threshold, the sensor is activated.
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Algorithm 1 Forward di�usion algorithm

Inputs: Plume area matrix A of size m× n, Di�usion constant D, Wind-vector Θ, Plume Source
matrix M

Outputs: State of plume concentration matrix S(A) after

1. Initialize simulation

(a) Set simulation duration = length(Θ)

(b) Initialize A to all zeros

(c) for i=0 to length(M)

i. set cells de�ned by Mito concentration
end for

2. Run simulation

(a) for i=0 to length(Θ)

(b) perform advection

(c) perform di�usion

(d) add new agent p to Aij based on Mi

end for

Algorithm 2 Sensor Detection

Input: Current state matrix A, sensor positions Si, detection range R, sensor threshold T

Output: Sensor nodes with detections S∗
i

1. for i=0 length(Si)

(a) if T ≤ Si set S∗
i = 1

i. else set Si∗=0
end if

(b) return S∗
i for all values =1

end for
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Algorithm 3 Observation correlation value algorithm

Input: x1, y1 sensor 1 position, x2, y2 sensor 2 position, wind history vector Θ̄(x1, x2) for sensor
1

Output: Corr(S1, S2, Θ̄) - operates on two sensors positions, and wind history vector at time t

1. Invert Θ̄such that Θ = {θ1, θ2, ...θN} → Θ
′
= {θN , θN−1, ..., θ1}

2. Using Θ
′
, perform advection-di�usion operation centered at (x1, x2)

3. Given x1, y1 located at Ax1y1 index value for A(x1, y1) and return this value

4.2.3 Plume observation correlator

The correlator performs a likelihood calculation between an existing track, allowing for data

association between observations in the sensor network. A new observation and returns the like-

lihood that the observation is related to the same event which caused the track. The purpose of

the correlator is to assist in accurate data association (DA), by providing a reasonable estimate of

the likelihood that two observations originated from the same plume source.

4.2.4 Tracking formation and state estimation

This module is the most computationally complex and handles the observation assignment and

predictor function calculation for each observation. The following three components are the main

functions:

1. Track initiation - New observations that do not associate with existing tracks based on

correlator initiate new tracks. Several rules must kill (prune) new tracks to prevent overload.

2. Track pruning - Due to the large number of new tracks produced with the track initiation

stage, tracks must be carefully pruned.

3. Inverse belief map generator - Given a track of observations, this code runs the forward

di�usion algorithm with inverse wind directions. (insert Bayes rule inverse likelihood and

TAD illustration). Uses existing di�usion .vi, but inverts the wind history. Observations

not belonging to track not included in this estimate. This leads to belief sharpening, and

focusing the belief map onto the region of a single target or release point.
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Algorithm 4 Track formation steps

• Step 1 of two step: Track formation

1. Track Initialization - Within the �rst 25 iterations of simulations all new observations create
tracks. The terminal node on track is designated leader node.

2. Data Association - All new sensors with observations calculate a likelihood function based
on wind history. Function evaluated at all leader nodes .

3. Track extension - observations that were associated in step 2 become the new leader nodes.

4. Track termination - The track is terminated once simulation ends or no new associations
within cuto� parameter. Track outputs sent to Step 2 of 2-step algorithm

(a) (b)

Figure 4.1: 3D plots of forward and inverse regions. Inverse likelihood (state estimation) from
a uniform estimator (a) generated by a sensor �eld measuring the single release event plotted in
(b). An ideal inverse likelihood region would be identical, however due to uncertainty the inverse
likelihood region is considerably larger than the region containing the plume release.
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4.3 Single release time experiments

The �rst phase of experiments has Single release times: we assume all plumes are released at

the beginning of the simulation, which greatly simpli�es track initiation, data association, pruning,

and state estimation. We focus on the ability of a network of sensors to form tracks, determine

the number of sources, and estimate their locations. Tracks are initiated only during the �rst

portion of each scenario which greatly emphasizes the rate of track growth, and prevents the need

for pruning. These experiments focus on testing the performance of the system under conditions

of di�erent sensor density, and a wide range of wind direction standard deviations.

Before running an experiment the simulation scenario generator module is invoked. Here a user

can manually place sensors and sources or recalled saved scenarios for additional trials. At this

time source size and concentration, wind type, and tracking type are selected. For performance

estimation large numbers of simulations can be performed with the same sensor setup except

di�erent wind series.

Once a simulation begins plumes observations from the sensor nodes are collected at each sensor

independently and reported to the tracking engine. The tracking engine is a simple implementation

of MTT, and makes the decision of track initiation, or appending the observation to an existing

set of observations (a track). The resulting output will be a graphical representation of likelihood

map based on given observations. When tracking is enabled, tracks are graphically di�erentiated

by colors. The result of a typical simulation scenario is displayed in Figure 4.2 with the forward

plume generation of 4 sources on the left, and the state estimates by the sensor network on the

right.

4.3.1 Studying the impact of wind uniformity

To examine the performance of the tracking based system compared to the non-tracking based

source location method a careful analysis of source estimation quality as a function of wind type

is required. The original experimental design for wind utilized an approximation of real with

with a state based Markov model. Although the output of the model generated wind data that

appeared to resemble real wind, this was di�cult to verify. Because large volumes of historical wind

records are freely available on the Internet, we use real wind data provided by NOAA. By selecting

data from a number of weather station locations we can estimate how the system will perform

under di�erent environmental conditions. These large continuous wind data sets are available with
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Figure 4.2: Tracking Simulation with 50 sensors, 4 sources, and the correct identi�cation of 4
di�erent tracks. Sensor observations are grouped into tracks based on plume predictor likelihood
of observations.
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sampling rates of 10 minutes, for the past several years.

Given that typical wind is highly complex, and the performance of the tracking system is

expected to be a function of the uniformity of wind, we wish to better characterize the performance

of the system under di�erent wind conditions. In the most simple case of uniform wind of constant

speed and direction, the solution of the inverse location problem is deterministic and easily solved

by non-tracking based methods. With the introduction of a stochastic wind process however,

solutions are more di�cult. The goal of the wind study is to answer the question:

How does plume tracking accuracy converge on the true source as a function of wind

direction uniformity?

Highly non-uniform wind direction (shifting wind) has a high rate of change in direction over a

time interval, thus creating more mixing between plume sources and greater di�culty in source

separation. A convenient metric for wind direction uniformity is standard deviation of direction.

By randomly selecting a segment from a large data set and then calculating the standard deviation

of that segment, we can collect wind time series with a wide range of direction uniformity. By

producing di�erent wind distributions and measuring the accuracy of the likelihood maps generated

for each it is possible to map performance as a function of wind uniformity. The steps involved in

generating wind data for simulation:

1. Download wind data. In order to study the system performance with real wind data under a

wide range of wind standard deviation σ it is �rst required to select wind data sets containing

samples within the desired range. The NOAA sample sizes contain on average 40, 000 data

points at 10minute intervals for hundreds of di�erent weather station locations. By selecting

stations near boundaries such as urban areas, greater ranges of σ are expected. Since each

trial only requires on the order of 200 data points, there are potentially 100 unique data-sets

per wind �le. In reality however, many selections of wind data will have very close values of

σ.

2. Filter wind data. The wind data requires preprocessing for missing data points, and a custom

�lter removes these discontinuities.

3. User Selects a range and resolution of desired σ. Input to the wind �ltering software a desired

range and the number of points desired for wind direction. The software will iterate until

the desired range and number of points are found matching this requirement. This wind
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direction study used data-sets with:

5 ≤ σ ≤ 90

where σ is in degrees, and sample size N = 200.

4. Choose random position within wind data. The wind data �ltering software will choose a

random position within the data set, select a block of 200 points, then calculate σ for that

block. If the wind block is useful it will be retained in a �le as input to the scenario generator.

This iterates until enough wind data has been found (range in σ and number of data points

for σ).

5. Export wind data. The wind time series with desired properties is saved for later use by the

scenario generator.

Once a range of wind data has been found that satis�es the parameters for σ these wind time

series data sets are saved to a �le and can provide input to the scenario generator for use with any

arbitrary con�guration of sensor placement, sources, and tracking parameters. In the wind study

the sensor placement, source locations, and tracking parameters are held constant as the collection

of wind data-sets are run. This allows for a comparison of performance across wind uniformity

while all other scenarios factors are held constant.

Wind data preprocessing

The �ltering of wind data (step 3 above) processes the wind data prior to the calculation σ.

Considerable preprocessing is required for the wind data due to missed observations. If these these

discontinuities in wind direction and wind speed are not removed calculations of standard deviation

have little meaning. Due to the large size of most �les (on the order or 40,000 samples) manual

editing is not feasible.

Calculation of σ

The wind values are used for a standard calculation of for wind direction standard deviation,

σ. The wind direction time series Θ takes on the values θ1, ...θN and the standard deviation is

computed as follows:

σ =

√√√√ 1
N

N∑
i=1

(θi − θ̄)2, (4.1)
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YYYY MM DD hh mm DIR SPD GDR GSP GTIME 
2004 12 31 23 00 116 7.5 999 99.0 9999 
2004 12 31 23 10 115 6.7 999 99.0 9999 
2004 12 31 23 20 134 7.2 999 99.0 9999
2004 12 31 23 30 136 8.2 999 99.0 9999
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Figure 4.3: Sample raw wind data (a) from NOAA , and (b) wind direction as a function of time
after �ltering missing data. In this data set θ̄ = 220.52 (mean), and σ = 42.03 (Std Dev). Data
points represent 10 minute intervals. Typical trials use 200 data points per trial, which represents
2000 minutes.

where θ̄ indicates the mean of wind direction time series Θ. The mean of the wind time series Θ

is calculated by the standard equation:

θ̄ =
1
N

N∑
i=1

θi. (4.2)

Batch experiments

A scenario was created, with the custom wind data set described in the previous paragraphs, and

then run overnight without supervision. In order to directly compare the performance of tracking

based source estimation with non-tracking based source estimation a large sequence of trials were

performed. The estimation performance of each trial is a�ected by sensor density, wind variation

(σ), sensor placement, number of sources, error rate in detections, source magnitude, and many

other variables. The state estimate is then compared to to the actual source location(s). The

metrics used for the quality of the produced state estimate will be described in Chapter 5, and will

also include a detailed discussion of the results from this wind study. The parameters used for the

wind study:

• σ range between 5 and 68 degrees

• wind data sets of 200 records
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• 200 sensors

4.3.2 Sensor node density study

In the sensor density study the same wind time series is used, but the number of sensors N

is incremented to isolate performance as a function of sensor density. This experiment required

the running of 25 scenarios having an identical plume source location and magnitude, but varying

sensor density from N = 25 → 300 in steps of 10, with a grid size of 250. Beginning with N = 25,

new sensors are added such that all preexisting sensors remain in place. With tracking enabled

each trial required approximately 30 minutes to run on a desktop PC with 500 MB memory. This

experiment illustrates the tracking based performance as a function of sensor density.

Selected belief maps which generated the likelihood values are illustrated in Figure 5.10. This

sample Figure used the following scenario values:

• Increase number of sensors from N=50, 100, 150, 200, 250, 300 for a 250x250 grid.

• Random addition of new sensors to existing set.

• Source �xed

• Same wind series for each trial

• Compared performance of belief maps generated by sensor network using tracks Vs. No

Tracks.

The discussion and results from the sensor density study will be presented in Chapter 5.

4.4 Continuous release time experiments

The second phase of experiments 1: continuous release times, includes continual plume releases,

in which plumes are allowed to release at arbitrary times throughout the simulation. Although

the assumption of a single release time allows for more focus on the track formation algorithm, in

reality the time of releases will not be known. In addition, a series of releases may occur in a region

at di�erent locations. We will model this possibility. Essentially this means adding an additional

unknown parameter of time to the inverse plume problem. In the single release experiments we

1The result of the thesis defense on August 22, 2006 was support for the concept and existing results, however
the suggestion that four new tasks need to be considered
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seek the location and number of sources, however in the continuous release case we also need an

estimate for time.

The introduction of the extra variable of time required much greater code complexity in the

areas of track initiation, and required the addition of a track scoring function. Track structure

was modi�ed from a simple linear track with leader nodes to a mesh or tree like structure. Track

pruning was also introduced. Multiple hypothesis tracking was not included in these experiments,

but could be included in future studies. Tracks are optimized at each time iteration, whereas a

true MHT method could allow for a global maximum likelihood. The two primary goals of the

continuous release time experiments:

1. Continuous Initiation

Track initiation expanded to entire simulation time. Focus will be on managing multiple

tracks, not MHT. This will require track pruning, and a rule-based approach uses a time out

value if no new observations added to track in a de�ned time interval. This scoring function

decreases over time when tracks persist without new observations. Each track will estimate

source location as well as time of release.

2. Extreme case Experiments

Will run experiments as in Single Release Experiments, but with sources released over time

and continuous track initiation. Will consider a more advanced rule for observation data

association, allowing tree structure for a track. Compare results for di�erent DA rules.

Explore the cases in which this method breaks down, regions in which large numbers of

plume sources are added.

These two goals greatly increase the complexity of the problem and require the inclusion of the

following new experimental (simulation) components:

1. Plume Release Matrix

With Releases throughout simulation, multiple sources released over time, a user interface

2. Track initiation module

Track initiation for entire simulation time.

3. Advanced data association (DA)

Originally just linear tracks, data association needs to form trees which include all new obser-
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vations with association to members in the track. The committee expressed that discarding a

large number of observations by forming strictly linear tracks loses much useful information.

4. New Experiments

Run experiments testing these new features. Test the functionally for large numbers of plume

sources.

Originally it was assumed that adding these three features and performing the new experiments

would require about a week of time. Continual releases were added without great di�culty, but

continual track initiation and the more complex DA were much more di�cult than anticipated.

Time was spent upgrading the simulation to meet these requirements. Redesigning the code

structure had the side bene�t of major improvements in e�ciency, with simulations running about

500% faster than the original. This section highlights some of the most relevant experiments from

the second plume tracking simulation.

4.4.1 Releases throughout simulation

The purpose of this modi�cation is to introduce multiple sources at di�erent times throughout

the simulation. In the original simulation, sources were only released at the initial time t0. Each

new release must be de�ned by three parameters ton, toff , and amplitude α. The release function

for each source is approximated by this square wave function.

Adding releases throughout the simulation was quite easy since the forward di�usion-advection

component of code operates on a concentration matrix (state matrix) independent of the number

of sources. No major modi�cations were required beyond the enhanced release array. The main

simulation loop checks the current time against the release array and adds agent to the speci�ed

area at the current time. The scenario generator now contains a Ton and Toff for each source

added into the simulation. Adding the extra variable of time was simple in the forward problem,

but added a great deal of complexity in the inverse problem. (Essentially this adds the dimension

of time into the inverse problem, taking the inverse problem from 2D to a 3D problem).

4.4.2 Continual track initiation

Adding track initiation to the simulation throughout the run greatly increased the complexity of

the code. This feature was essential to handle releases throughout the simulation. In the previous

simulation track initiation only occurred during the beginning of the simulation, and therefore
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Time step x y amplitude (α)

2 12 18 4
3 12 18 4
4 12 18 4
6 111 112 2
7 111 112 2
8 111 112 2
9 111 112 2
10 111 112 2
11 111 112 2

Table 4.1: Example release array, at each time step the main loop checks this release array for
release events matching the current time. In this example there are 2 release events: one occurs
at t = 2 → 4, and the second occurs at t = 6 → 11 at a di�erent location and amplitude.

Figure 4.4: Release �truth� for three independent plume sources with amplitude α, initial time Ton

, and �nal time Toff .

Figure 4.5: Two plumes released at di�erent times at the red plus marks. The �rst source releases
from t = 0 → 100, and the second source releases from t = 100 → 200 for a simulation lasting 200
time steps. The �rst releases (a �limited release�) appears as a moving cloud across the sensing
space.
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would not form new tracks later with releases introduced throughout the run-time. The challenge

becomes deciding when to initiate a new track for unassigned observations, and when to ignore it.

The naive approach to track initiation is simply to create a new track each time an observation

is received and fails to associate with an existing track. This simple solution presents two major

problems. First, due to the continual sampling nature of these sensors, they report hits for typically

10-100 time-steps as a plume passes their area. Without careful �ltering, this �ood of observations

may only refer to one correct association, and the remaining hits will produce thousands of new

bogus tracks. In addition, it is possible for the same observation to associate with the same

track many times resulting in a track littered with duplicate observations. The second problem is

deciding when and how to terminate a track. If all tracks are kept alive with naive track initiation,

the simulation quickly produces an unreasonable number of tracks to maintain. Both of these

fundamental problems can be solved with aggressive track pruning.

To solve the duplicate observation problem, all new observations are compared to existing

observations within the tracks, and immediately dropped if it has associated with a track at a

previous time. This prevents duplicate DA between a sensor and a track. To prevent the creation

of new bogus tracks, the same rule is applied - if a sensor is currently associated to an existing track,

no new tracks can initiate from that sensor. After passing these two basic �lters, an observation

can then create a new track. Once a track has initiated it immediately receives a score of 1 (Γ = 1)

which decays over time. A track pruning routine was developed to maintain these track scores

over time and kill tracks once the score reach a threshold. (See next section for detail).

4.4.3 Data association - branching

One main complaint during the defense was the discarding of observations assigned to a track

or source. In the previous simulation, the terminus of a track was always de�ned by a single leader

node. Previously, data association for tracks was only performed between the current leader node

of each track and the current set of new observations. This led to a strictly linear track shape.

The current version adds the possibility to associate with all members of a track, and gets rid of

the leader node designation. By allowing DA with all nodes in a track, observations that arrive

between nodes later in time can still associate with a track.

A modular design was adopted that allowed experimentation with di�erent DA algorithms. In

the preliminary development a nearest nearest neighbor approach was uses, before adding in the

more complex wind-based likelihood data association.

78



Figure 4.6: Data Association (DA) scheme. Track association possibilities for 3 new observations
and 2 existing tracks. DA is based on likelihood function between each new observation and every
track member for existing tracks. If DA succeeds, the score of the track is reset to 1, and continues
to degrade over time. An observation may associated with multiple tracks. If no DA is performed
on any track, a new track will be initiated with the observation.

Another choice in data association is assigning to single track or multiple tracks. The simplest

approach is to assign to all tracks above threshold value for data association. Since we are not

using multiple hypothesis management, want to assign the observation to all tracks meeting the

DA threshold. This allows for a sensor to correctly participate in plumes from di�erent sources

that overlap or cross the same region. If observations were only allowed to be assigned to a single

track, this would falsely terminate a secondary track crossing the region.

Data association is performed at each time step for all current observations and all existing

tracks. If an association is formed with a track, the observation is concatenated to the track, its

size increases by 1, and the score of the track is reset to Γ = 1. New observations can associate

with all existing tracks if the likelihood function for any point within a track is above threshold.

When new observations do not associate with any exiting tracks, a new track is initiated of length

1, and score Γ = 1.

Typically a sensor observation is active for a range of time iterations, therefore we must prevent

observations produced at t = ti + 1 from associating with observations from the same sensor at

t = ti. Sensors are not allowed to associate with themselves.
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4.4.4 Track pruning

Producing a workable track termination scheme required considerable e�ort. Pruning must

occur within the �rst few time-steps of the simulation to prevent the rapid buildup of large numbers

of meaningless tracks.

A method to score tracks was developed for track termination (pruning). The track score

Γ(τ,N) is function of the number of nodes N belonging to a track, and time since last data

association, τ . This eliminates the large number of single tracks formed from a single observation

which plague the use of continual initiation. At the time of track initiation (τ = 0, N = 1), and

each new track receives a score Γ(τ) = 1. The value of a track then declines linearly over time at

the rate r. The score at time τ for a track with N sensors is:

Γ(τ) = (1− rτ).

This score will decrease linearly at the rate r for every time-step until a new DA with the track

succeeds. Once Γ(τ) reaches a score below the score threshold Γthresh the track will be terminated.

A threshold score for killing a track, Γthresh was selected as Γ = .10, with a decay rate r = 0.5,

meaning a track will persist for 18 time-steps without DA until Γth is reached and the track is

killed. The performance of the tracking system is very sensitive to the values selected for r and

Γthresh. Setting the decay rate determines the time a new track persists with no new observations.

If r is too low this results in large numbers of small tracks, whereas a large r kills most tracks that

can provide useful information about the source. An additional rule was added to preserve tracks

that reached a size threshold, Nth. Nth = 5 was observed as a good value. Once a track reaches

this length, it is maintained throughout the simulation with a score Γ = 1.

Γ(N ≥ Nth) = 1

The careful selection of r and Γth will eliminate the large number of short spurious tracks, while

maintaining most larger tracks of interest.

This introduces the problem of which tracks to consider for likelihood estimate at the end of a

trial, should we include tracks that were terminated during the middle of the trial period? What

if a track is terminated just a few iterations before the end of the simulation? The solution is to

only consider tracks for state estimation that contain a minimum number of sensor observations.

80



4.5 Performance metrics

In this section several metrics will be developed for performance analysis of the MTT method

for plumes. In the general multi-target tracking problem for plumes an unknown number of sources

(targets) may appear and disappear at random times. They may persist for an unknown random

time. Each plume source persists independently for a random length of time and then ceases

to exist, based on the release matrix RT . Under the most general setup, a varying number of

indistinguishable sources emit material from a �xed location.

A perfect system would be able to identify the times of appearance, locations, and disambiguate

source locations. In contrast to the canonical MTT problem the tracking algorithm must report not

only an estimated path of travel and the target's estimated locations, but also the discontinuous

two dimensional regions likely to contain the plume material. This increased dimensionality of the

source location makes data association of observations more di�cult.

These metrics are designed to demonstrate the accuracy of the tracking-based method compared

to a non-tracking-based method (uniform estimator). In the uniform estimator method, assuming

the number of sources are unknown, all sensor measurements are applied uniformly to the state

estimation.

4.5.1 Independent variables

Three factors of interest to real sensor systems include needed density of nodes, performance in

adverse wind conditions, and the ability to separate multiple sources. Although many parameters

could be selected, these were chosen as the most relevant ones for preliminary study. Once the

metrics are developed the performance of these two di�erent methods will be compared against

the following conditions:

• Number of sensors (sensor density)

As the number of sensors within the region of surveillance A is increased, how does location

accuracy respond? We are interested in the minimum sensor density required to achieve a

desired level of location precision.

density =
N

m× n

(Where N is the total number of independent sensor nodes in the network, and m = n are
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the dimensions of the region).

• Wind uniformity

If we measure wind uniformity as the standard deviation of wind direction for a segment

of wind data, how does location accuracy respond as uniformity decreases? Wind standard

deviation is de�ned as σ.

• Number of sources

As the number of sources released in the region of surveillance increases, how does the location

accuracy for a single source respond? This is a measure of the source-separation ability of

the system.

4.5.2 Error estimation

The output of a plume experiment is a state estimate of the likelihood of releases over a region.

The state estimate is in the form of a belief map, M(A). The value within each cell, M(Aij) is the

relative likelihood of a plume source originating in that cell. More precisely this state estimate x̂t

at a time t is based on a partition of the observations ω within A. Each partition ω will generate,

in general, a di�erent M(A). In general each di�erent partition ω will generate for a We require a

metric to compare this estimate to the true location(s) of plume release point(s). There are three

metrics to evaluate the performance of a trial:

1. Likelihood error

What was the predicted likelihood of the true source location relative to the maximum

likelihood location? Performance Metric De�nition, For a Single Source:

Pk(M) =
Mk(i, j)
ML(M)

Where :

• Mk(i, j)is the likelihood value for a true source k;

• ML(M) is the maximum likelihood value within the map M ;

• and Pk(M) is the performance for map M for source k.

• P̄ (M) is the aver gage performance for all k.
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1. Estimated position error

How far from the true plume location is the maximum likelihood location? The de�nition

of location error is the di�erence between the maximum likelihood location within M(A),

(argmax M(A)), and the true source location, M(i, j), where the distance error Edistis

calculated:

Edist =
√

(x1 − x2)2 + (y1 − y2)2,

where the two points identi�ed by the maximum likelihood and the true source are denoted

(x1, y1) and (x2, y2).

2. Estimated number of sources error

(This estimation method will vary for the tracking and the non-tracking based algorithms.

non-tracking based method required the use of image processing techniques to count the

number of peaks produced in the source likelihood map). What was the relative di�erence

between the true number of sources, and the number of sources predicted by the number of

active tracks at the end of the trial? That is, we estimate:

||ω∗| − |ω||,

where ω∗ is the estimated partition. The absolute di�erence between the actual number of

partitions and the estimated number of partitions (tracks) is the estimated source number

error

The performance metric ratio between the predicted value of the true location, and the maximum

value predicted within M provides a relative estimate of the certainty of the true location. In

other words, if we select ML(M)as the best value within M , how close is this value to the value

predicted for the true location? Using this system a score of P (M) = 1is the best, and P (M) = 0

is the lowest. A value of 0 indicates that the true source location had a likelihood value of zero

after the state estimate.

A track in the plume problem is de�ned by an area in space-time occupied by particles orig-

inating from the same localized source. The essence of the MTT problem then is to �nd tracks

from noisy observations, creating a correct partition ω of the observation set ZT . Each partition

ω requires making solutions to the problems:

1. Data association - �nding a partition ω of observations ZT such that each element in the
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Source A(i,j) Belief M(i,j)

ML(M)

Figure 4.7: Results used for performance comparison - forward plume with its corresponding belief
map and the values for ML and the true source.

collection of observations was generated by a single plume source.

2. State Estimation - estimating the state S(A) concentration values of cells within A for prior

times, S(A) = [C(x, y)]T

For this reason it is appropriate to have performance metrics that address these two problems sep-

arately. In the data association case the measure of performance is the ratio of correct associations

to incorrect or missed associations in the tracks. Correct associations will result in the ability to

determine the number of unique sources. The state estimation performance is determined by the

closeness of the approximation of the state space matrix, S(A) which is the correct concentration

of agent in the cells of A. Good performance in the state estimation results in accurate values of

concentration.

In the �rst set of experiments the goal is to characterize the probability of detection for a

single source located in the simulation �eld. In this case one and only one release is added to

A as a limited release, which is an impulse of particles about a single point. The wind �eld is

known at all sensors, and uniform across A. In the second set a sequence of di�erent wind �elds

is applied to a constant sensor con�guration and source location accuracy is compared to truth

as the randomness of wind is increased. Source location accuracy is measured as a mean squared

error (MSE) distance of the best guess for the source position to the actual position for each trial.

In the third set of experiments sensor detection noise is added, along with a probability for false

detection. This includes errors due to measurement quantization from the binary sensing modality,
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and thresholding. Performance for a set number of sensors in a constant distribution is measured

as noise is increased.

The primary metric will be the distance from the true plume release point to the estimated

release point. In addition to location, a plume source released at cell number (i, j) within the

region A (called Si,j) contains a vector of attributes S = (x, y, σ, t0, t1). The metric for estimating

this vector of source attributes (location, initial width σ,time of initial release t0, and time of �nal

release t1 will include error estimates for this vector of attributes. Estimation of errors in: time,

space (x, y) , release type (function of release), release amount, number of tracks compared to

sources will be included. A user of this algorithm would also be interested in the con�dence that

the correct number of tracks is reported. For example, if the system reports the presence of 3

tracks, it is desirable to know the probability that the true number of tracks is either 2 or 4. More

precisely, an important metric of performance is probability of false detection as well as probability

of false-negative detection.

The last question from this list can be answered by producing di�erent wind distributions and

measuring the accuracy of the likelihood maps generated for each as a metric for quantifying wind

uniformity.

As the P increases in a region A the density of potential tracks increases. More important than

the number of potential tracks is the density of tracks, or tracks that are caused to overlap by highly

variable winds. MTT methods are capable of handling large hypothesis sets, but begin to break

down when data association is ambiguous. For this reason, performance is tested as a function of

the number of plume sources in a set area, thus increasing the track density as P increases. The

number of tracks itself may not matter, but if overlapping the problem becomes hard. In these

simulations the region A is quite small (on the order of L = 250), therefore increasing P increases

track density.

4.5.3 Source counting metric

A new metric is introduced, Pcount, which is the performance in counting the number of targets.

A score of 1 means all targets were correctly identi�ed. This metric is de�ned

Pcount =
1

Ecount
,
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where the counting error Ecount, is the number of sources is the relative di�erence between the

ideal number of partitions (sources) and the actual number:

Ecount =
|ω − ω∗|

ω
.
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Chapter 5

Results and analysis of simulation

5.1 Single release time results

The initial groups of experiments assumed a single release time at the beginning of the sim-

ulation, with the challenge of the sensor network to partition sources into the correct number of

tracks, and then perform a state estimation on these sets of tracks. The number of sources is

unknown a priori.

5.1.1 Example release types

In the single release time experiments there are essentially two characteristic release types:

continuous and limited. The continuous release type releases agent at a constant rate throughout

the duration of a simulation. Figure 5.1 is an example of the most simple case of a single release

source, a single sensor downwind, and a constant wind direction and speed. This is the classic

response curve, where the maximum peak is a function of the release rate, and the distance of

the sensor from the source. The added complexity in the experiments however was the possibility

for changing wind direction. The second characteristic release type used in the single release

time experiments is seen in Figure 5.2. In the limited release case sources do not release for the

entire simulation, and have a single Toff which de�nes the time window in which the release is

active. These two examples show a single release, however in the experiments, these releases were

also combined with multiple sources and time-varying wind. The main trait of the experiments,

however, is that all sources begin release at the beginning of the simulation.

87



Source

+ o

sensor

(a)

0 50 100 150 200 250 300 350 400 450

0

1

2

3

4

5

6
Sensor Response Continuous Release

Time

C
on

ce
nt

ra
tio

n

High resolution sensor 

quantized sensor response 

Threshold 

(b)

Figure 5.1: Source and sensor setup with response for continuous release type
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Figure 5.2: Source and sensor with response for limited release type
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5.1.2 Likelihood map performance comparison

As explained in chapters 3 and 4, the output from a group of sensors is a likelihood map,

where the total area of detectability (TAD) for a network of sensors de�nes the area of possible

surveillance. The intensity of areas in the map represent a relative likelihood (not probability) of

the presence of a source at that location. Since the sum of the area in each TAD=1, large TAD

regions correspond to very low likelihood values in each cell. For example, a region consuming

50 × 50 = 2, 500 cells, if uniformly distributed, would have a likelihood value in each cell of

1
2,500 = .0004 or 4E−4. The primary advantage of the tracking based method is a partitioning of

the observations, thus a partitioning of the TAD into regions with increased likelihood per cell.

Likelihood maps for uniform estimator

The likelihood map generated by the uniform estimator method does not assume any information

about the number of sources, and therefore the sum of the TAD is unity. When no information is

available about the number of sources, all sensor observations are evenly considered. As illustrated

in Figure 5.3, subplot (a), all sensor observations are included in the estimator and produce a

likelihood map. Although the source is located within the map in this example, the value predicted

for its location is quite small, due to the large size of the map region. In addition three peaks are

noticeable within the map, and the true source lies o�-center from any peak. The ratio between

the likelihood value at the true source, and the maximum value is the performance metric used.

Therefore, the maximum performance value is 1, which occurs when the maximum likelihood value

occurs at the true source location.

Detecting the number of sources in a region using a uniform estimator is di�cult, but can

be performed with image processing techniques such as peak detection and edge detection. By

performing operators such as the Laplacian or the gradient on the image map, regions of contrast

can reveal the number of peaks, which can then be counted to approximate the number of peaks.

This method, however, is highly unreliable due to the mixing e�ect of multiple sources. For example

the combined likelihood maps of several sensors spaced uniformly and located downwind from two

sources will produce a peak likelihood located exactly in the middle of two sources. The peak

detection method is therefore highly dependent of sensor, source, and boundary placement. For

this reason a peak counting method for determining the number of sources in a uniform estimator

method was not implemented as a comparison to the tracking-based method.
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Likelihood maps for 2-Step algorithm

In the 2-step algorithm case, when tracking is applied prior to state estimation, the assumption

is made that each partition ω of sensors is currently sensing the same plume event. For that reason

a smaller subset of the sensors within the network can make the unity likelihood assumption.

That is, the total likelihood score for a likelihood region equals 1, and therefore a more narrow

region leads to higher and more concentrated values of likelihood. This partitioning prior to state

estimation results in sharper state estimate likelihood maps, where one such map is generated for

each track. The comparison between these two types of likelihood maps for a collection of sensor

observations is illustrated in Figure 5.3.

Source separation

A good illustration of the advantage of the tracking-based method is demonstrated by the ability

of a network of sensors to perform source separation. In the continual release case two sources are

placed in the middle of the sensor �eld with a separation distance of zero (no source separation

possible) and then moved apart until two unique sources can be identi�ed by the tracking method.

The source separation distance is de�ned as the distance at which two tracks are initiated instead

of only one. The separation distance of these two sources is described as a percentage of the region

A, where A is a rectangular area of size m×m. For example, if the distance in which two sources

can be identi�ed is 10 cells, and m = 250 , then the ratio 10
m = 10

250 = .04 = 4% is the separation

ability. In the case of a region of size m × m, two sources are placed in the center and moved

to opposite edges until they are a distance m apart, which is considered 100% separation. The

percentage values under several conditions are presented in Table 5.1.

The above source separation metric is somewhat problematic due to the �nite dimensions of

A, and the fact that the advection-di�usion model of agent movement does not conserve mass.

Once plume agent wanders out of A the agent disappears, treating the edge regions of A as a

sort of vacuum. It is acknowledged that this test is highly dependent on relative placements of

sensors, sources and wind directions. However, in the region near the center of A the test is more

realistic. Of course in a real world scenario, agent is conserved, and once drifting outside an area

of surveillance can reenter at another point.

The true advantage of the tracking based source separation can be seen in conditions of high

wind variation. In areas of zero wind, there is less information available for data association to

tracks in our model, and the two methods perform more closely. However, when wind experiences
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Constant wind Wind σ = 30 Wind σ = 43 Wind σ = 65
Tracking-based network 10 18 25 32

Non-tracking based network 35 68 80 NA

Table 5.1: Source separation (2 sources) ability for tracking and non-tracking. Distance reported
as percentage of region A in which two sources reported.

rapid shifts (as occurs in many urban areas or areas at geological boundaries) the tracking based

model excels and operates in regimes in which the non-tracking-based model breaks down. Values

of σ > 60 are examples of such a regime. Chaotic �ow regimes of air present in urban areas with

tall buildings would be an excellent test for the tracking based model.

5.1.3 Wind variation results

The purpose of the wind study was to analyze how tracking performance converges as a function

of wind uniformity.

Wind dataset examples

The sample wind data-sets are illustrated in Figures 5.6 and 5.7. On the left in each Figure is the

quantized wind direction used in the simulation, which is derived from the original dataset to its

right. These example data-sets represent σ values corresponding to σ = 18, 25, 34, 94 degrees. The

large �les from NOAA contain on the order of 40, 000 records, and the goal of the wind processing

software was to locate blocks of length 300 satisfying the needed range of σ which was 5 → 95

degrees. Once data-sets were selected to �ll that range, each dataset was manually inspected to

detect major discontinuities that could represent errors in the source data. (for example weather

stations often report a value of 0 for periods in which the weather station is inactive). Other

events such as hurricanes or power outages can inject such discontinuities into data. As described

in chapter 3 and 4, the weather data was then quantized to take on the values:

Θ̂ = {0, 1, 2, 3, 4, 5, 6, 7},

where Θ̂ represents an approximation to the original wind dataset. The mapping occurs as 0 → 0

degrees, and 7 → 325 degrees. Wind direction is then rounded to the nearest value between 0 and

7 in this mapping range. By looking at the entire meta-scale statistics for a single weather station,

we gain insight on the typical range of wind σ for a given location. Each �le contains weather

data for an entire year at one station. The time interval of weather data wind direction sampling
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Figure 5.3: State estimation results using a uniform estimator (a). In sub-Figures (b) and (c) the
observation set is partitioned into tracks before state estimation.
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(c) Track 1 partition likelihood map
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Figure 5.4: Direct comparison between likelihood maps generated using all sensor observations
(no tracks) and the same observation set with tracks. The 2 tracks correctly partition the set of
observations into 2 smaller subsets producing much higher likelihood values for the true source
locations. Belief map for uniform predictor, aggregated belief probability for N=57 sensors, 15
hits. Probability of true plume sources are 6.9E−5 and 1.1E− 4 for the two sources. For the other
track (track 2) prob of plume sources = 1E − 4 and 4.5E − 5. Belief map for uniform predictor,
aggregated belief probability for N=57 sensors, 15 hits. Probability of true plume sources are
6.9E−5 and 1.1E − 4 for the two sources. Belief maps using tracks, 2 correctly identi�ed tracks.
Prob of plume tracks 3.4E − 12 and 1E − 4 for the correct track. N=57 , 15 hits. For the other
track.
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is 10minutes, therefore each one-year record represents:

365
days

year
× 24

hrs

day
× 6

samples

hour
= 52, 560samples,

of wind direction data. (with some fraction of those samples being discarded for missed data or

extreme discontinuities). When this large block is analyzed we �nd:

σ = 68

which is the overall value for an entire year. This supports the decision to use values of σ between

5 and 90 degrees.

In addition to sharper and more precise likelihood maps generated by the tracking-based 2-step

algorithm, we also see a major advantage in performance with sensor networks in conditions of

high wind variation. This increased mixing e�ect greatly increases the complexity of the source

separation problem, and the tracking approach allows for correct partition management even in

high mixing scenarios. Figure 5.8 summarizes the wind results in the range:

σ : 10 → 90,

where a higher σ corresponds to higher wind variation. We see a very sharp drop-o� in performance

for the non-tracking-based method for σ > 40. Since typical average values for σ are at least

60 - this means the non-tracking based methods are not expected to work well under typical

environmental conditions. In comparison the tracking-based method operates above a performance

value of 0.5 until a σ value of nearly 80 degrees. In conditions of low wind variation (σ < 40) we see

the tracking performance still greatly exceeds the non-tracking based method (uniform estimator).

Wind speed

Until this point the e�ect of wind speed variation has not been considered . Although not

included in the formal study, several zones of performance were observed pseudo-quantitatively

during the hundreds of hours of observed simulations. A brief summary of the wind performance

summary is presented in Figure 5.9. The Standard deviation of direction is divided into 4 groups,

and wind speed is scaled into 4 groups, producing 16 total wind categories. As expected, the

system performs optimally when wind direction change σ is low and wind speed is high. In this
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Figure 5.5: Raw wind data block showing meta-scale statistics for block of 30,000 points
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Figure 5.6: Wind for σ = 18 degrees and 25 degrees
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Figure 5.7: Wind for σ = 34 and 94 degrees
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Figure 5.9: Summary of wind performance zones. Zone 1: Best performance
zone, zone 2: intermediate, zone 3: Worst performance
Zone: low wind Speed, with Frequent shifts

zone, the moving plume most closely resembles a moving rigid target.

5.1.4 Sensor density results

The density experiments were designed to illustrate the relative performance of tracking and

non-tracking methods across a range of sensor densities. Figures 5.11 and 5.10 illustrate the results

from the density experiment described in chapter 4. One result of interest is that an increase in the

number of nodes beyond an optimal point in the non-tracking method results in higher uncertainty

of source location. This can be explained by the involvement of an ever-increasing number of nodes

which are not partitioned into target groups. (In the non-tracking based method no information

is known about the number of sources).

Identical networks (node location, number of nodes, and sensing range) with tracking can

achieve sharper maps with lower densities of sensors. The major advantage of using tracks is the

ability to establish the number of unique sources, thus requiring a lower number of nodes per unit

area. The theoretical information content of a sensor network grows as log(N), where N is the

number of randomly placed nodes within the region. Therefore we see diminishing returns as N

gets large. Another way to consider the value of adding more sensors is to consider the information

content provided per cost. Assuming a constant cost per node as the number of nodes increases, we

expect the information per cost to decrease as 1
log(N) by adding additional sensors. Both networks

approach this limit but at di�erent rates. For this reason, we see information content per cost

bene�t for using the tracking based method.

Taking a closer look at Figure 5.10 we see the changing likelihood map as the number of
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sensors in the region is increased from N = 50 → 300. This example Figure shows a few snapshots

representative of the many trials used to generate the density results. The �rst subplot, subplot

(a) shows the example forward plume release. This single release experiences changing wind, and

activation of a number of downwind nodes. As N increases, the preexisting nodes are left in place

as new nodes are overlaid. This results in the nodes from previous trials always being included

in the results of later trials with more nodes. This allows us to strictly examine the bene�t from

adding more random nodes to the region.

The maximum value of 300 nodes was selected and the experiment area grid size of 250 produces

a total number of cells:

Cells = m× n = 2502 = 62, 500,

and each sensor has a sensing footprint of 5 × 5 cells, meaning the total number of cells being

sensed was:

Sensed = N × 25 = 300× 25 = 7, 500,

therefore on the order of 10% of all cells are monitored in the maximum density case. In the lowest

density case, about 1% of all the cells are monitored. This range of 1% → 10% cell coverage was

selected to represent typical values of a city or region that implement an air monitoring program.

In the case of a city with high value assets (such as national monuments) such a system would

implement the top 10% of areas with likely targets with sensors.

The source location (indicated by a �+�) is at the head of the plume release in (a). Subplots

(b), (c), and (d) show the resulting maps produced with increasing sensor density. The likelihood

values in these plots have been normalized. Normalization is performed by dividing the entire

matrix by the sum:
m∑

i=0

n∑
j=0

A(i, j),

where the sparse matrix will have a majority of the cells at zero concentration. Therefore, we are

adding up the total area of the likelihood map �patch.� Once normalized the range of values per

cell are E−3 → E−4 , depending on the size of the patch. In this particular example, we notice

minimal improvement with added sensors, as all performance metrics are on the order of E−4. This

example illustrates the non-tracking case, as well as numerous peaks that do not correspond with

the actual source location. Although the source location is within the patch, its likelihood value

is about 5 times less than the peak value, therefore in this example, the performance value ≈ 0.2.
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The combination of all trials is presented in Figure 5.11 which directly compares tracking and

non-tracking based performance as a function of sensor density, with performance values ranging

between 0.2 and 1.0. Once again, the performance metric used here is the ratio between predicted

likelihood of source and the maximum likelihood, therefore a score of 1 means the source was

located at a site of maximum predicted likelihood. This could be problematic as a metric if the

likelihood distribution is totally uniform, or several regions of identical maximum likelihood are

spread around the region. In practice however, the generated likelihood maps have reasonably

sharp peaks distributed throughout the likelihood maps.

5.1.5 Source number counting results

An additional result for the single release experiments was the comparison between the tracking

and non-tracking methods in determining the number of targets (sources). Figure 5.12 compares

the performance in determining the correct number of targets. Performance metric for source

counting was developed separately from the other performance metric, and was described in section

4.5.3. A score of 1 means the correct number of target was identi�ed, and a score of zero means

none were identi�ed. As expected the tracking-based method excels at larger numbers of targets in

the same sized region, due to mixing of agent across the sensor �eld. For non-tracking based sensor

networks, the multi-source separation problem is very di�cult. The region used for the results in

Figure 5.12 used a region of size 250 × 250,with a wind σ = 10 degrees. In this comparison the

method used for source counting for the non-tracking based approach was peak detection from a

standard MATLAB peak counting function found in the image processing toolkit. It is possible

this method could be improved with enhanced image processing techniques using the non-tracking

methods.

5.2 Continuous release time results

5.2.1 Example release types

The goal of the continuous release experiments is adding the variable of time to the problem

of source location. By continuous release we mean sources may appear and disappear at any

time during the simulation. The introduction of these more realistic releases have arbitrary initial

times, arbitrary number of sources, and each source can also exhibit pulsing behavior. A charac-
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(b) Belief map N=50
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(c) N=200
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(d) N=300

Figure 5.10: Density experiment scenario that used for N=50,60,...300 nodes in 10 node increments.
This Figure shows the forward plume for N=50(a), and selected belief maps generated for N=50,
P (M) = 1E−4 (b), 100, P (M) = 1E−4 (c), and 300, P (M) = 1E−4 (d). Identical source location
and wind series used in each trial. The likelihood scores for the true source location increase until
optimal N, and additional sensors provide little added information. (optimal N ≈200)
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Figure 5.12: Source estimation performance as a function of number of sources for sensor �elds
experiencing same wind time series.
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Figure 5.13: Pulses release type used in the continuous release experiments and sensor response
for pulses of release.

teristic example pulsed release is illustrated in Figure 5.13 along with the typical binary response

observations reported in a simulation. In this particular example, the source does not release for

the entire duration of the simulation, and has lag periods between release pu�s, and a constant

wind direction. The second example release in Figure 5.14 illustrates a complex scenario with four

sources, a time-varying wind, and pulsed releases. In this complex case, the binary observation

sequence at a single sensor provides very little information about the initial states producing the

observation. This complex release case is a good example of the advantage of the tracking-based

approach and represents the type of scenario used in the experiments to di�erentiate tracking and

non-tracking based state estimates in a sensor network.

5.2.2 Continuous release tracking

The goal of this section of experiments is veri�cation of the ability of the 2-step algorithm to

correctly track sources of the pulsed or complex variety introduced in section 5.2.1. When these

complex release types are introduced, and the assumption removed that all sources are released at

the initial time, a number of problems are introduced:

1. Track maintenance becomes non-trivial

2. Track pruning must be introduced

3. The dimension of time is introduced into location estimation
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Figure 5.14: Complex release type with multiple sources and changing wind. Sources begin and
end at di�erent times.

4. More complex tree-like track structure

Once these three added complexities were considered and introduced into the tracking simulation

system, a number of basic trials were used to test the added features. The fundamental features

we seek are the ability to initiate and maintain tracks throughout the simulation, as well as the

ability to correctly identify the number of sources.

The upgraded continuous release system maintains tracks that persist above a threshold score,

and the score degrades over time. The system performance is highly sensitive to this value, which

depends on wind conditions, sensor density, and other factors. If the threshold is set too low,

data associations are missed and tracks terminate prematurely. When the threshold is set too high

above optimum, the number of associations explodes leading to system lock-up. Thus, performance

is optimized when the data association threshold is set to an optimum value. This value is studied

for one case empirically, and not derived theoretically. Additional study of optimum values would

be a ripe area for future study.

In addition the geometric limitation that tracks take on a strictly linear form was removed

in this section. Tracks have a mesh or tree-like structure. Sensor observations are allowed to

data associate with all nodes within a currently existing track, as opposed to only the terminating

nodes or leaders, as in the previous chapter. An example simulation which demonstrates these

more complex standards is seen in Figure 5.15. In this example 5 tracks are formed from the

release of 2 sources. As the simulation persists, tracks can merge, die, or initiate at any time. For
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Figure 5.15: Multiple tracks initiated throughout the simulation for continuous releases.

this particular snapshot in time we see 5 tracks that previously were 8 tracks. The orange track

is a combination a merger of 4 di�erent tracks that had data association merging occur. Green

nodes within the tracks correspond to sensors that were activated at a previous time, but are no

longer sensing agent above threshold.

Figure 5.16 illustrates the superposition of agent concentration (in contours) with two tracks.

These two tracks correctly correspond to the release of two di�erent sources that occurred through-

out the simulation. The �rst release was limited in nature, and originated at location (200, 200)

as indicated by the red (+) mark. The limited release contour is seen as a pu� drifting down-

wind from the release origin. Later in the simulation a second continuous release was initiated (at

t = 200 out of a total T = 400) with an origin location of (190, 100) just below the �rst track.

The observations for this second event are correctly data associated to the second track, not to the

initial event from (200, 200). Several observations (red �lled circles) to the left of the larger track

were not associated with the track, and represent data association errors.

5.2.3 Tracking optimization

The introduction of continuous track initiation, as opposed to only allowing track initiation

during the initial portions of a simulation adds the need for track scoring, and the track scoring

function Γ, as introduced in Chapter 4. This function is sensitive to the threshold for track

104



2 

4 

6 

8 

10

12

14

16

18

−50 0 50 100 150 200 250 300
0

50

100

150

200

250

300

X

Y

Agent Concentration

Figure 5.16: Time sequence results for two sources of complex nature, and resulting tracks.

termination, Γthresh, and a lowered threshold can easily result in a combinatorial growth in the

number of tracks, and therefore careful empirical evaluation is required to identify proper tracking

parameter constants.

Figure 5.17 demonstrates a track score function using the parameter Γthresh = 0.2. This was

determined to be a proper value for the majority of experimental trials. In this example of the Γ

function the score decreases over time at the rate r, with a value r = 0.05. This means at each

time during the simulation in which no new data association occurs the score is decreased by this

amount r. That is, is in the no DA case,

Γt+1 = Γt − r.

Once Γ ≤ Γthresh the track is terminated. In the Figure this can be seen as Γ is set to zero at

time t = 65. This track scoring approach allowed the continuous initiation of tracks, and prevented

excessive track number growth with a basic pruning algorithm.

The second major parameter critical to e�ective track pruning and proper data association

is the data association threshold. This value determines the correlation score (Correlation score

developed in chapter 4) required between two observations for an association to be formed. Similar
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Figure 5.17: Track score as a function of time. Γ = 1 at track initiation, and reset to Γ = 1 for
each new association.

to the Γthresh parameter it was determined empirically. Figure 5.18 presents the e�ects of changing

this value over a range of 0 → 27. As this plot illustrates, large di�erences in the standard

performance metric occur when the parameter is not set to an optimal value. Essentially a low

value prevents correct associations from forming, and a high value leads to a high false positive data

association rate. A large number of false positive DA formations manifests as all tracks merging

into one large track, and the loss of the advantage of the 2-step algorithm observation partitioning.

5.3 Scalability

Due to the additional computations overhead of releases throughout the simulation, continual

track initiation, and pruning - the entire simulation code had to be optimized and reworked. After

code optimization, improvements in data structures - an improvement of 500% on average was

observed compared to the original single release system. Running the same simulation initial

conditions from before the thesis defense most trials required about one �fth of the time to run.

This was accomplished by elimination of super�uous data passing, and more e�cient storage of

large arrays. In addition, the number of times the likelihood function is calculated was reduced.

The one dimensional cluster array containing tracks was changed into a 3D array of numerics,

along with many other major improvements in e�ciency.
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The most computationally intensive portion of the simulation is the calculation of the likelihood

function. Because the algorithm now considers all possible DA permutations between observations

and tracks, the computation needs to be as e�cient as possible. For example, if there are 5 tracks

each containing 10 observations, and 4 new sensor observations, then the likelihood function must

be calculated 5 × 10 × 4 = 200 times! This is only for a single time-step. Each of these 200

likelihood scores would then be compared to the DA threshold value, and DA would be performed

for each pair above threshold. The problem with this setup is that the average calculation time

for a likelihood function is currently 200− 400ms, or close to 1
2 a second. That means a minimum

of 100 seconds per time-step for this example.

The approach was to minimize the number of likelihood function calculations. The goal was to

stop performing likelihood calculations with a track as soon as DA within the track occurs. For

example if DA occurs with the �rst analyzed point in a track, no more points in that track are

analyzed. Since we are no longer maintaining leader nodes, a connection map among nodes in

a track is no longer required. We only need to know only which nodes belong to a track. If we

wanted to have a complete graph containing all edges and connections, this approximation would

not work. A track is therefore more a collection of points, than a connected tree or graph.

Figure 5.19 shows the time required for a range of simulations using the improved simulation

design as the number of plume sources increases form 1 to 20. Unfortunately run-times for sim-

ulations in the original phase were not collected to allow for comparison. However, it should be
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Figure 5.19: Runtime performance for algorithm as number of sources increases

noted, that the original design for similar numbers of plume sources, sensors, and tracking enabled

required several hours each in some cases. Although performance was not addressed as a major

theme of this thesis work, if the system were to be deployed in a sensor system of simple nodes,

greater performances in computational e�ciency could most likely be achieved.
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Chapter 6

Conclusion and future work

This thesis introduced the new concept of tracking chemical plumes in sensor networks with

simple binary detections, and then demonstrated its feasibility through a series of simulations. The

two-step algorithm was developed from the fundamentals of Bayesian state estimation and used

to derive likelihoods for plume sources based on a partition of observations. By performing the

tracking step of the two-step algorithm �rst and correctly partitioning observations, the number

of sources can be much more accurately estimated than using simple peak detection in likelihood

maps. Experimental results indicated that tracking based plume source localization performs

better under conditions of low sensor density as well as high wind variation. Although many

additional studies can be performed characterizing the MTT based approach to plume tracking,

these foundation studies verify the utility of the approach.

Due to the novelty of this approach to plume tracking a large amount of work remains un�n-

ished. Future simulations might operate on more realistic forward simulations including barriers,

sophisticated wind models, and three spatial dimensions. Future theoretical work needed includes

optimization of sensor placement, more analytical approach to �nding ideal sensor densities, the

inclusion of negative observations, and the removal of the assumption that all observations are

available at a central location. In addition, the sensor network issues of e�cient routing, band-

width limitations, and power need to be considered before �eld experiments are implemented.

One such important application is the monitoring of mobile sources releasing particles, and the

protection of corridors such as interstate highways. Once the more sophisticated theoretical and

simulation problems have been addressed the veri�cation of these models in physical �eld testing

would be needed for ultimate validation. Many systems based on the fundamental process of di�u-
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sion are good candidates for future study to illustrate the extensibility of tracking-based methods.

The domains of disease propagation, information di�usion (tracking the content of news stories),

and social processes involving di�usion are excellent candidates.

6.1 Needed theoretical work

The two-step method introduced in Chapter 3 makes the assumption that information is uni-

versally available throughout the sensor network. Real sensor networks typically employ ad hoc

routing which requires a more distributed processing approach to target tracking. When commu-

nication losses are included along with limited bandwidth, the assumption of a central processing

location is not realistic. A more distributed approach would adapt the two-step algorithm to

existing methods developed for sensor networks in the distributed signal processing community.

The current system does not make use of negative observations due to the bandwidth demands

in a censor network for continuous reports. A future modi�ed version, however, could query sensor

nodes in the vicinity of current activity to retrieve relevant negative detections. For example,

negative detections upwind from the sensor initiating a track could greatly increase the state

estimate of the plume source when not enough positive detections are available. By addressing only

nodes in the regions of current activity and requesting negative detection reports, a compromise

could be reached between bandwidth conservation and performance.

Sensor placement was not examined in these studies, as all density studies added sensors in

random locations. Much can be gained by optimal sensor placement, since the number of nodes

available are a critical limitation in real world deployments. Once boundaries simulating buildings

are added to the simulation, experiments could then be run to study the optimal distributions

for sensors in a realistic city model. This would greatly enhance the basic sensor density studies

performed in this thesis which assumed an empty two-dimensional area without barriers.

The simulation performance could be greatly improved by porting the code to a more e�cient

programming language such as C. Although LabVIEW is an excellent prototype development

system, there is a compromise in e�ciency. In addition many of the numerical approximation

routines could be optimized with more careful design. Integrating the plume tracking simulation to

the PQS framework developed at Dartmouth College o�ers the advantage of an optimized tracking

code-base, and would likely generate much more e�cient run-times. The most computationally

intensive portion of the plume tracking code is track maintenance and pruning, which is the strength
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of PQS.

6.2 Field testing

The �rst two years on this research topic invested time in the development of a physical sensor

network platform that was never fully implemented. We attempted to leverage a custom designed

sensor network system from Dartmouth College named MiniMe. Future �eld tests would likely

bene�t from a commodity sensor platform such as the Berkeley motes1 due to the extreme time

required to design and maintain a custom system. A recommended �rst stage experiment would

be a limited indoor deployment with controlled wind (fans) and a controlled source with non-

toxic gas such as CO2 or H2O vapor in the form of gas cylinders, a boiling water source, or a

solid state humidi�er. The OnewireTMprotocol by Dallas Semiconductor can accommodate pre-

manufactured weather stations for wind direction, and would easily interface with semiconductor

gas sensors manufactured by Figaro, Inc. of Japan. Water vapor semiconductor gas sensors exhibit

the fastest response time, and the non-toxic nature of working with water vapor makes this an

ideal choice for a �plume� source. Experiments performed at Caltech with mobile robots used

water vapor as the plume gas of choice [27].

The next phase of testing would be the expansion from limited indoor experiments to outdoor

�eld trials. This introduces the complexity of chaotic wind, as well as unpredictable temperatures

and humidity. If water vapor is to continue being the plume agent of choice, lower temperatures

and relative humidities would allow for the greatest sensitivity. Summertime conditions with high

humidity and temperatures would create a high background signal, therefore winter conditions are

predicted to be ideal for testing.

6.3 Expansion to other domains

6.3.1 Mobile source problem

Some work has been performed on the mobile plume problem, however this problem remains

mostly untouched. The extension of stationary plume source work to this application is a logical

next step. The goal of of the mobile source problem is to estimate the presence and location

of an emitting source that could be hidden inside a shipping container, and the transportation

1http://www.xbow.com/
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infrastructure becomes the vector along which the source can travel. The problem is essentially

the same as the stationary source location inverse problem, with reduced dimensionality due to

more concentrated prior distributions on source probability. (Location of the source is constrained

to a preexisting port, roadway, or interstate as opposed to an arbitrary unknown location). In

the implemented simulation, roadways are approximated as a Manhattan geometry where driving

decisions of the target at each intersection are made with a Markov model characteristic of the

particular vehicle. The dynamics of plume are now superimposed with dynamics of vehicle. In the

case of velocities four possible scenarios:

• No wind, no target motion (isotropic plume)

• Wind only, static source

• Moving source, no wind

• Moving source, wind

One desired property would be to separate sources based on observations correlating to di�erent

models of vehicle behavior. If two vehicles have su�ciently di�erent behavior models, we would

expect the PQS could perform source separation based on chemical observations in the region

of the mobile plume. The increased complexity is due to the moving source location. We seek

to apply the same Process Query System techniques applied in previous work to the problem of

shipping and transportation monitoring.infrastructure.

Vehicle movement and source emission in the forward simulation begin at location xiyj and

we consider the transport vehicle to have a sequence of states over time determined by position,

velocity, and driving behavior. The emission characteristics of the source are identical at this

stage to the source used in the stationary inverse source problem. The di�erence is that instead

of a continual release injecting material at the same xiyj location at each time iteration of the

simulation, it has a characteristic vehicle movement, and may transition to a neighbor cell. For

velocity Vx, Vy at ti :

xi+1 = xi + Vx

and

yj+1 = yj + Vy.

112



Velocity as a function of time is determined by the constraints of a Manhattan geometry, there-

fore only velocities that conform to the current road orientation are allowed. Future simulations

can easily import real road vectors from GIS data for matching real road information. Velocity

state transitions can occur at �intersections� which are the points at which two allowable travel

vectors cross. In the current implementation all roads are rectilinear, meaning at each intersection

a vehicle has four possible options, which are calculated with the state transition matrix aij . A

vehicle can stay in its current velocity state, or transition into any of the other allowable states at

each intersection. A Markov model estimates can be adjusted to include more states arbitrarily.

We consider a sequence of velocity states at increasing times t as v(t). A speci�c sequence of these

states is denoted

vT = {v(1), v(2), v(3), ..., v(T )},

which is a �nite array of vehicle velocities which along with the initial position describe a

unique vehicle path. In the example vehicle simulation, the vehicle can exist in any of the four

states corresponding to v(t) = {1, 2, 3, 4} (North, South, East and West), and has asymmetric

transition probabilities . In this example the vehicle has a tendency to stay in its current direction

(70%), and may turn into any of the other 3 directions with a lower probability (10%). In this

transition matrix example,

aij =



.7 .1 .1 .1

.1 .7 .1 .1

.1 .1 .7 .1

.1 .1 .1 .7


.

The model for state transition of v(t) is given by:

P (vj(t + 1)|vi(t)) = aij .

Sensors are deployed in the region of transport with one sensor per cell or sector. The example

simulation divides a region A into 30 sectors, each is assigned one sensor in a random location

within the cell, and the total size of A is m = n = 256. This assumes some degree of uniform

sampling across A, but also allows for the error in sensor placement, as well as the possibility of

multiple pathways within in single cell. Sensors are activated in a binary fashion, just as in the
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previous work whenever a threshold level is detected. Wind direction and magnitude across A

are similarly varied, and available at each sensor node for the calculation of a wind history vector

and plume predictors. Once observations arrive at sensors in the network the wind history vectors

can be estimated against neighbor sensor nodes as well as overlapping transportation vectors.

Plume predictors overlapping a road are reported as observations with a high likelihood, and the

observation location is de�ned as the roadway position within the plume predictor with highest

value determined by the plume predictor function. In this way an extra constraint is added to

the system when compared to the completely uniform distribution experienced in the stationary

implementation.

Mobile Source Tracking Queries

We need a method for expressing our �queries� of mobile plume events. Using the PQS approach,

we represent a plume query as a set points in a two dimensional space that have plume events

originating at speci�c times. These queries are submitted to a server running a PQS-like engine

and are correlated to all available observations until a match is found. Multiple queries running

on PQS-Plume would correspond to multiple explanations of the same data. The model query

handles plume origin, multiple source origins, amount of mass released, and the time of release. An

example query would be, �Was there a medium sized release at 9am this morning along Interstate

95?� This high level query contains location, magnitude, and a time which may correlate with sets

of observations collected at a future time. A query could also contain sets of locations, such as �Was

there a release of material on multiple trains near New York City at 9AM?� If the observations

within the sensor network correlate highly enough with this query, this query will be returned as

a highly ranked hypothesis. The idea of PQS is that multiple competing queries may explain the

same observation set. Rankings of returned hypotheses may change temporally as new observations

are available.

Queries describe points in the region A, or sets of points in A. The query asks if a plume

event has originated within A at time tk at location (i, j), or a set of (i, j) locations. These release

points correspond to the unknown release matrix RT which is the set of all release points across

time. It is important to also de�ne the concepts of track and hypothesis. A track is a collection of

plume observations all related to the same plume release point, and can take on an arbitrary shape

in A depending on wind conditions. For example if there was no wind and the agent dispersed

uniformly in all directions, all the observations in that circle of dispersion would be assigned to
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the same track. This notion of a track is somewhat di�erent than the traditional idea in physical

target tracking research. Unlike the tracking of a rigid object such as an airplane, the shape and

size of the object being tracking changes over time. For this reason a track is more loosely de�ned

as observations originating from the same event, and typically take the form of a meandering

�ow region or plume. A hypothesis is a collection of tracks explaining the entire set of plume

observations, therefore multiple hypotheses typically exist for the same set of observations.

One problem with representing plume queries is the large state space for a practical application.

To represent all possible location queries for a region A of size n × n would require 2n2
di�erent

queries. That means a grid of size 2×2 with each cell in the binary state of �release� or �no-release�

results in 16 di�erent queries, and a grid size of 200× 200 would require more than 1012041 queries

to fully represent the space! This only deals with permutations of possible binary release cells, and

does not consider concentrations within each cell. Obviously a sate reduction scheme is required.

The concept of scalable or tunable models allows the iterative re�nement of models from course

to �ner resolution. Model re�nement allows the running of rough models that automatically

re�ne over time when activated. Analogous to two dimensional optimization methods, or well-

known root-�nding methods such as Newton's Method, �rst the local maximum is located at low

resolution. This grid position of local maximum is then subdivided and re-optimized by another

order. Taking once again the 256×256 grid example, it could be divided into 4 cells resulting in 16

possible states or queries. Once one of the 16 queries is ranked above a set threshold of probability,

a new branch of queries could bee automatically generated seeking higher resolution. Instead of

submitting a query for a plume origin at a pinpointed location, a query can specify a large region

of a city. Once this course query receives a non-trivial ranking, the query can be upgraded to �ner

resolution and be allowed to consume more computational resources. In addition targets within of

a city may be of higher value than others (roads passing near monuments such as the Golden Gate

Bridge, or other critical infrastructure) and these regions within a query should be represented at

high resolutions by default. Variation of the grid resolution as required allows a tremendous state

reduction and produces a less intractable model.

6.3.2 Trusted Corridors

The distributed process detection approach to trusted corridor threat identi�cation requires

data sampled across a range of spatial-temporal locations. Rather than using the currently available

sensor data from a small number of weigh stations, this e�ort relies on simulated data that will
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Figure 6.1: Tunable Models in 2D: First Model has 24 = 16 possible states. The activated cell
is re�ned to 4 new cells. This zooming model feature allows higher resolution models in areas of
interest.

illustrate the increased value of a larger number of sensor locations along a speci�c corridor. This

combination of large numbers of airborne substance sensors with relatively few high �delity weigh

stations serves to leverage data available across a larger temporal-spatial region. Detections missed

at weigh stations can then be indicated across a larger network of inexpensive low resolution sensors.

The power of process detection lies in correlation of large numbers of disparate sensor observations

and �nding collections of observations which support a single process.

Weigh stations provide identi�cation of vehicles via manifest documents and serve as entry

and exit points for the control of a speci�c corridor. Once a vehicle has entered a particular

controlled corridor instrumented with sensors capable of chemical, biological, radiological, nuclear,

and explosives detection (CBRNE) these distributed observations can be used in conjunction with

weigh station identi�cation information to track speci�c high risk vehicles. The type of information

available at weigh stations alone may not be su�cient to identify suspicious tra�c, especially given

the risk of missed detections with short stopover times. The process detection component of this

approach would �ag a suspicious observation in the sensor network between weigh stations and

using tracking algorithms predict when the suspicious vehicle is to arrive at the next control point.
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Figure 6.2: Mobile target moving with activated sensors (x) and inactive sensors (0), triggered
by a threshold level. The contours show contamination concentration. The region A is of size
m = n = 256, and is divided into 40 cells, where each cell has one randomly placed sensor
node. The dotted lines indicate allowable travel pathways, and the mobile source moves on this
Manhattan geometry with a Markovian model at each intersection. The traversed path is indicated
by the arrows.
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Figure 6.3: Ideal mobile source forward process, no wind
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Figure 6.4: Mobile source in addition to wind process
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Figure 6.5: Coordination between more complex weigh stations collecting manifest data and highly
distributed low resolution CBNRE sensing assets.

This hybrid approach will allow for advanced warning the and ability for intervention at stations

further downstream on the controlled corridor.

6.3.3 Information di�usion

The dynamics of information propagation and the �ow of topics through populations has been

studied recently. By characterizing the process of information propagation from individual to

individual, drawing on the infectious disease model, a di�usion based model of information �ow

throughout societies has been developed [25]. If we consider the blogshpere as a medium through

which information �plumes� di�use, many of the same concepts developed in this thesis could be

applied to such a social system. Binary detections, observation partitions, tracks, state estimates,

and �plume sources� all could be transferred into this problem. In the case of source detection

or source counting, the goal of such a system would be correctly identifying the origins of ideas

and information within the Internet's interconnected web blogs known as the blogsphere. The

same principles of source attribution, source separation, and source location likelihoods could be

adapted into this blogsphere tracking problem. More generally, any system exhibiting di�usion as

an underlying process could adapt the models developed in this thesis for the purpose of tracking.
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Appendix A

Code descriptions

This appendix contains information about the simulation system hierarchy (written in Lab-

VIEW and MATLAB programming languages) which would be useful for future use of the existing

code libraries.

A.1 Main simulation

This simulation consists of a main panel user interface to view the simulation progress. The

left pane show plume sources and concentrations within the space as they evolve in real time. This

acts as the hidden state space, that is the sensors do not have access to this global image. The

simulation window is a display of plume sources, sensors, tracks, and can also be overlaid with

map �les representing a geographical area for reference. For high quality graphical output images

can be exported to MATLAB. This screen reports the �nal statistics after long batch runs.

A.2 Scenario generator

This interface allows the custom design of scenarios which can be saved to �le and recalled in

batch mode for large scale processing. Parameters include wind, sensor placement, grid size, wind

type, tracking parameters, and source placement.
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Initialize, setup scenarios
And control batch runs

Main loop 
heavy computation

Result Outputs,
statistical calculations

Initialize, setup scenarios
And control batch runs

Main loop 
heavy computation

Result Outputs,
statistical calculations

2-Step Alg.

Figure A.1: LabVIEW simulation hierarchy

Figure A.2: Functional hierarchy of LabVIEW algorithms developed for this simulation. This
chart only shows the top 5 levels out of 9 total. The second tier algorithms (7) are the core top
level reusable algorithms that were developed.
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A.3 Wind editor

The wind editor loads �les downloaded from NOAA, performs �ltering to remove missed ob-

servations, calculates wind statistics, and allows the user to select, edit, and view custom portions

of large wind time series to be used in the simulations.
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Appendix B

Variables, constants, and de�nitions

A Region of size m× n containing cells

S(A) State of region A

TAD Total Area of Detectability

F (St) Function operating on state S

T Time interval

ZT Set of all observations, where ZT = {z1, z2, z3, ..., zT }

zt(i, j) Observation at time t for cell (i, j)

xt State at time t

XT Set of all true states, where XT = {x1, x2, x3, ..., xT }

x̂t Estimate of state at time t

X̂T Estimate of states

RT Release matrix

M(A) Likelihood map of A

σ Standard deviation

Ct(i, j) Concentration matrix at time t
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Rtk
(i, j) Release matrix at time tk. Each cell takes on a value of 1 or 0.

St(A) State of A at time t

ThreshminThreshold for binary detection

Pe Peclet number, ratio between advection and di�usion

D Di�usion constant

W Wind history vector where W = {wt1 , wt2 , ..., wti−2 , wti−1 , wti
}

Zi Observation

St0 Original event

Sm,n Node placed on the space

t0 Beginning of the simulation

CH4

Ai,j Cell in A

w Width of patch for sensing

Θ Wind history vector, where Θ = {θ1, θ2,...θN}

M Plume Source matrix

Si Sensor positions, where each sensor Si has a position xi, yi

S∗
i Sensor positions with detections

Θ(xiyi) Wind history vector at sensor Si

Corr(S∗
i S∗

j θt)Correlation value between two sensors with detections at time t

N Sample size of wind

Ton Release times for sources, continuous

Toff Release time for source

Γ(τ,N) Track scoring function
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Γthresh Track scoring function threshold

τ Time since last data association in a track

Nth Threshold length of a track for track maintenance

M(i, j) Likelihood value for cell ij in A

ML(M) Maximum likelihood of map M argmax (M)

P (M) Performance of M where

M(i, j)
ML(M)

= P (M)

ω Partition of an observation set

OT Observation set

T Duration of surveillance

R Region of surveillance, where R = [0,m]× [0, n]

Ω All possible partitions of an observation set

CAR Correct assignment ratio

ICAR Incorrect to correct assignment ratio

Si,j Source released at cell i, j

S Source which has attributes S = (x, y, σ, t0, t1)

S(A) concentration values of cells within A for prior times, S(A) = [C(x, y)]T

λf Probability of False Alarm rate

pd Detection probability

ω Partition ω is one set of possible assignment of observations, where ω ∈ Ω. Ω is the set

of all possible partitions given one set of observations ZT ;

ω∗ Truth partition ω∗ is the best possible partition of observations;

SA(ω) The set of all of associations in ω, SA(ω) , Where SA(ω) = {(τ, tτi , tτi+1) : i = 1, ..., τ −

1, τ ∈ ω}, where tτi is the time a track τ is observed i times;
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CA(ω) The set of all correct associations in ω, CA(ω);
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