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Abstract— We have developed a new approach for detecting
and tracking chemical or biological plumes in distributed sensor
networks, with the objective of solving the inverse location problem.
The canonical plume tracking problem suffers from the challenge
of a large state space, and we seek reduced dimensionality using
information theoretic and stochastic methods. Working with an
airborne plume we model a plume using multiple hypothesis tracking
(MHT) techniques as opposed to transport based methods rooted in
solutions to differential equations. The simple plume model attributes
include: diffusion constant, wind direction, and wind magnitude. The
location of the plume prior to current observations is calculated
statistically with the use of an estimator-based joint probability.

The main contribution of this work is the predictor model -
a required step of the MHT algorithm. A customized predictor
for plumes (as opposed to Kalman filtering) allows the MHT-like
algorithm to treat the plume tracking problem as the extreme
instance of the multi-target tacking (MTT) problem. The central
question: how can a MHT-like method be implemented for plumes
in a sensor network of simple sensors capable of rudimentary binary
detection, wind speed, and wind direction. The predictor must handle
the problem of data association for plume observations. The context
for this work is the development of multiple competing models which
will be correlated to incoming observations in real time. The models
will run in a generic multi-purpose framework called PQS (Process
Query System).!

Simulations were performed demonstrating the viability of the
MHT approach with the use of a customized predictor for plume
target tracking.

Index Terms— Sensor networks, multiple-target tracking, plume
tracking, data association, process query systems

I. PROBLEM STATEMENT

Rapid detection of plume sources is a problem of intense
interest to national security as well as environmental monitoring.
Many of the current biological and chemical monitoring systems
have detection lag times of hours or days due to the manual data
analysis required to identify and attribute harmful agents. Unlike
finite targets, a non-rigid plume spans a region and requires the
assimilation of information about a non-localized continuum of
targets [1], [2], [3]. Quickly assessing the current state of an
effected region thus demands the automated processing of large
numbers of observations yielding potentially competing hypothe-
ses. Desired information about the harmful agents include source
attribution (location), source distribution, and source magnitude.
We seek to develop a method capable of handling large numbers
of chemical observations by assignment to tracks and hypotheses
which are constantly updated, pruned, and ranked on the basis of
likelihood.

IFor more information
http://www.pgsnet.net/

about PQS work at Dartmouth, see

A. General Problem

Given an observation sequence O7 of T sequential obser-
vations from a network of N sensors, what is the probability
P(OT|8S) where S is the current or initial state of the surrounding
environment. We wish to estimate this likelihood. Given this
current state estimation at time ¢; what is .Sy or S;_. where S;_.
is the state at some previous time. Sy, can be considered as as
two dimensional matrix S of with width m and height n, and
containing m * n concentration values that evolve according to
a diffusion process as a function of time. An estimate of S,
provides a description of the plume origins.

As opposed to the traditional subjects of target tracking such
as mechanical vehicles, plume signal propagation is largely de-
termined by wind and diffusion instead of much faster electro-
magnetic or sound energy [4]. This highly non-linear problem is
not obviously solvable by current sensor network target tracking
methods. The fluid dynamics of plumes typically mean chaotic
meandering flows. It is common to measure a concentration
of zero a majority of the time even in the proximity of the
source, while large readings may be present at great distances
[5]. Many sensor network applications performing inverse array
acoustic localization for ground targets use sound intensity and
time of travel, but other methods are required in the case of
plumes. Another challenge is that chemical observations are often
of extremely low resolution, and often only indicate a positive
or negative result. Traditional methods for inverse array signal
processing fail to transfer into the plume tracking domain.

B. Application of MHT Problem

We suggest monitoring plume sources with MHT, maintaining
tracks from collections of individual observations, and tracing
observations back to their origin. Unlike the canonical MTT
problem which utilizes Kalman filtering, we can measure all the
forces having an impact on the plume structure, whereas with
traditional MTT the target may have an intelligent unpredictable
component such as a pilot control [6]. Knowing the wind history
vector ((We,__, oo, We,_,, Wy, , Wy,]) for each of the N nodes,
the substance of interests diffusion constant D, and the relative
location of all the nodes in the network allows for the calculation
of a plume predictor value for each new observation. Each O, at
sensor n has a probability of correlation for ¢;_. < ¢; with event
O;_. observed at a different sensor. The plume predictor estimates
this probability, and uses the value in observation assignment
to tracks, or track initiation. Essentially we ask, what is the



probability that O; and O;_. originated from the same plume
event?

The goal is to find source locations, rank likelihoods, which
will allow the determination of the number of sources. How well
do current observations Oy, in the sensing network correlate to
the same original event (S, )? We propose the monitoring of
a two dimensional area (m % n) with a field of N stationary
sensors, where N is large. Others have approached the plume
tracking problem with groups of autonomous mobile robots [7],
[8], [9], however our work examines the problem of static sensor
networks.

In previous work [10] we primarily considered the use of the
EnKF (Ensemble Kalman Filter) as a mechanism for observation
correlation, however this paper considers the implementation of
a coordinated MTT system using a much simpler model. EnKF
methods are typically used for weather modeling in which high
resolution atmospheric data is available from a relatively low
number of nodes. Others have also approached the problem using
complex models imported from the meteorology community [4].
The result of turbulent flow eddies in particle dispersion events
is a highly discontinuous and intermittent distribution of plume
particles [7], [S] where gradient following is not practical.

Current sensor network technology allows us to consider solv-
ing the problem with less complex models, compensating with
a larger number of nodes. Low complexity static networks have
the advantage of low energy consumption, lower device cost, and
the potential for high density ubiquitous deployment to monitor
for long periods of time. The multiple target plume predictor
presented here is one such possible simple model that takes
advantage of high sensor density.

In our model, the particles making up the plume of interest
are all under the influence of the same forces in the surrounding
environment. (Wind and diffusion across the the two-dimensional
space are uniform). Our model of a chemical plume will consider
only diffusion constant D and wind W, which can be observed at
each sensor of known location. Given the observation of a known
chemical at the sensor allows the sensor to lookup D . Because the
wind medium can be measured at each node, the sensor network
has complete knowledge of the only two parameters affecting
plume dynamics in our model. The implemented wind model
is a Markov model, producing a pseudo-random wind direction
approximation of real wind.

The goals of our approach:

o Estimating plume source location

o Determination of plume “tracks”

o Few false positives

« Scalable algorithm (to a large sensor system)

o Near real-time tracking
The goal of this work is not improving upon MHT itself, but de-
veloping several plume predictors, which can then be inserted into
existing implementations of MHT algorithms [6] such as PQS.
The function of this plume predictor is the statistical correlation of
individual observations, and the assignment of new observations
to tracks. This approach supports the eventual development of
multiple high level models of a dispersing chemical plume. High
level models will enable the development of end users to submit
plume query process models. Once these models are developed,
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Fig. 1. Forward plume model propagation is a function of diffusion constant
D and wind W, with wind direction determining the dominant direction. The
ratio P, = D , also known as the Peclet number determines the width of the

plume region. The Peclet number (Pe) is a measure of the relative importance of
advection to diffusion.

several will be simultaneously submitted to a PQS framework.
PQS has the ability to correlate incoming data against multiple
plume models and rank their likelihoods. PQS queries of interest
include: finding the plume source/origin, total mass released,
number of distinct sources, and future predicted plume location.

II. BUILDING A PLUME MODEL
A. Forward model

Before tackling the inverse plume problem a mathematical
model of the forward diffusion process is needed. This forward
model provides simulated data of diffusion events until actual
field data can be collected for solving the inverse problem. In
addition, developing a forward model and running simulations
provides fundamental insights into the characteristics involved in
the diffusion process.

Without the presence of wind, the fundamental process behind
plume movement is diffusion described by Fick’s Law. In two
dimensions, assuming anisotropic diffusion:
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The diffusion of in x depends only on the distribution in x

and the diffusion in y depends only on the distribution in y. The
solution of interest [3]:
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With A; and A, as constants for the x and y dimensions.
The profile of concentration, C'(z,y) along any straight line cut
through the patch will have a Gaussian distribution. If the concen-
tration profile begins as a point we will see smoothing Gaussian
distributions as time progresses. As a direct result of Fick’s Law,
the flux in any direction is proportional only to gradient in that
direction. If the diffusion constants are anisotropic, the cloud will
disperse an-isotropically, growing more quickly along the axis
with a greater diffusion constant. The propagation length along
any axis will be proportional to the diffusion coefficient along
that axis:

Cl(z,y,t)

Ly =40, =4v/2Dyt

With the introduction of wind the plume process becomes a
combination of advection and diffusion. Assuming a uniform con-
stant wind direction, the wind solution is a smoothing Gaussian
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Fig. 2. The generation of pseudo-random wind using a Markov model and state
transition probabilities for 8 wind direction states. The output of the wind model
approximates real wind variation behavior.

distribution shifted in space linearly as time evolves. The resulting
analytical solution to this partial differential equation (Fick’s
Law) in most situations must be obtained by approximation
with numerical methods. Depending on the constraints, initial
conditions, and boundary conditions of the diffusion problem a
finite-difference may be possible.

The forward simulation allows for creation of arbitrary number
of plume sources which may vary in area or intensity. Random
plume initial conditions can also be created. The properties of
plume number, size, and intensity constitute the initial concen-
tration of the plume state space S;,. Once S is populated with
initial plumes, the wind/diffusion processes iterate on the initial
conditions. During the simulation wind can also be set to (0,
constant, or variable random). While the forward simulation
runs, S can be sampled by set sensors or /N randomly placed
sensors that report a binary detection when the concentration
value exceeds a threshold. (This defines a detection).

In our forward simulation the parabolic partial differential
diffusion equation uses the boundary conditions: concentration
for all ¢ is set to zero at the boundaries, the initial concentration
values in the space are set by the user. The forward numerical
simulation implements the forward-difference solution, with a
typical grid size of m = 250 and n = 250. A pseudo-random
wind component can be added to this solution, estimated by a
Markov wind model with 8 directions (states) [11]. The charac-
teristics of the wind can be altered by changing the transition
probabilities between states. Decreasing the chance of staying in
the same state (P;_,;) increases randomness and frequent changes
in wind direction - thus making the plume more difficult to track.
In these experiments the Markov model was a uniform transition
probability, where the likelihood of transition into the same state,

Fig. 3. Forward diffusion process implemented with numerical forward difference
method and pseudo-random wind field. Three plume sources of different initial
concentrations started this simulation.

P;_,; = .95. The probability of transition into neighbor states was
equal in both directions: P41 = P;—;—1 = .05. Two types
of contaminant sources are possible in the simulation: limited
source in which there is a one time release, constant release
source in which additional mass is emitted from the source at
every iteration. All the simulations in this paper used a constant
release.

B. Multiple Target Inverse Model

A plume may be considered as region with a center of mass,
with ideal observations expected to be based on the diffusion
equation and distance from the plume center. In practice however,
plumes split into separate discontinuous filaments - moving in a
chaotic flow regime. The plume may generate low readings near
the source, or intermittent high concentration readings to sensors
at great distance. Techniques for MHT are very appropriate for
such intermittent data availability, and also can handle new track
initiation and termination [6]. The use of Gaussian descriptions
for atmospheric dispersion models can give rise to very mis-
leading estimates of concentration fields. A plume is frequently
not well dispersed, rather consists of a long sinuous volume of
material. As a result, a detector with a fast response time will
report a series of relatively short bursts of high concentration
adjacent to long intervals during which the concentration is close
to zero. Detections are essentially binary in nature. This property
of plume dispersion called intermittentcy results in concentration
readings of zero at a given sampling point.

MHT for plumes addresses the problem of assigning new
observations to existing track hypotheses, or new hypothesis
creation. (data association). Kalman or Bayesian filter predictors
assume a strict temporal arrival order of observations and may
have to throw out late-arrival data. The tracker may have have
to repeat calculations to integrate the late-arrival in prior calcu-
lations, thus degrading performance. MHT maintains a ranking
of data associations, based on likelihood. MHT suffers from
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Fig. 4. Track Prediction as a part of the MHT algorithm: assignment of new
observations to existing tracks or the decision to create to a new track requires
track prediction based on the last known observations.

combinatorial explosion in data association, however additional
knowledge about target kinematics or the environment can help
prune hypotheses [1]. In the case of plume tracking with variable
wind, we have the advantage of having a complete knowledge
of the wind vector history, which is essentially the propagation
history for all particles in the region.

C. PLUME PREDICTOR

The standard Kalman predictor used in target tracking is
not designed for large continuous mass - we require a custom
predictor designed on simple binary sensor information. For each
observation, the particle event will be projected backward in time
onto a probability distribution based on wind history, substance
type (D), and location. (The plume predictor).

Observing a single release plume event - one can calculate
a total threshold radius - which is the total surface area in
which the event can ever be detected. (Assuming a minimum
threshold of detectability Thresh,,;,). Beyond a certain time
maximum 7T,,,,the peak of the Gaussian distribution will sit
beneath Thresh,,;,. This time T},,, can be estimated, and the
total area of detectability (TAD) calculated. After performing
this analytical derivation for TAD and making a graphical plot
of the TAD, it can be adjusted for various wind and D values.
TAD produces a cone shape, with width determined by the Peclet
number P, , based on the ratio P, = %. Within this cone area,
the likelihood of detection at a given location and time can also
be estimated. The geometric constraint results in a cone-shaped
area that represents the entire zone of detectability over all time,
given 6;. The total area of detectability is a function of:

e wind, w

« diffusion constant, D

Hypothesis |
SCAN 1 A
— o ™
x x X
g g g
[ = =
SCAN 2 O
SCAN 3
Hypothesis Il
SCAN 1 A
— o [s2]
x X x
[ [ [
SCAN 2 O
SCAN 3 [
Fig. 5. The role of the predictor in MHT is observation assignment. Given the

same set of observation scans multiple track permutations and hypothesis sets are
possible.

o total mass released, M

Distorted ice-cream cone geometries result when TAD is
projected back-wards into the oncoming wind direction if wind
varies over time. By estimating joint probabilities between mul-
tiple sensors and different TAD zones, overlap regions within
boundaries provide additional information. By looking at the
joint probabilities of two or more TAD zones (binary “YES”
detections at two or more sensor locations) we can estimate joint
probabilities of a plume origin to higher certainty. For example if
multiple sensors have detections from overlapping TAD regions,
we expect a lower probability of false detection for all current
observations. For the sensors A and B, and the plume origin x:

P(A, Blx)
P(Alx)

For three sensors (with corresponding cones) A, B, and C:

P(B|A,x) =

P(A,B,C) = P(A, B|C)P(C)

= P(A|B,C)P(B,C)

= P(A|B,C)P(B|C)P(C)

When observations are available from the sensor network, the
current wind vector history for the relevant node is weighted
with the observation. Thus, a large number of observations at
a particular nodes gives more weight to its particular plume
predictor. Once a series of these weighted plume predictors
are compared against neighbor sensor nodes that lie within its
overlaid plume predictor regions, relationships can be formed
between nodes. A map of these integrated node-node relationships
produces a connectivity map among nodes. This map represents
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Fig. 6. Data association and plume predictor for MHT

the likelihood of 2 sensors being passed across by the same plume
event. When large numbers of sensors are available in the region
of interest, and as IV increases, the connectivity map converges to
an approximation of the relevant tracks that approximate a plume
dispersion event.

III. RESULTS
A. Plume Predictor for Single Observations

Using the plume predictor P; at time ¢;, given a single O; at
node n, O; is correlated with W; (wind history vector) to produce
a probability distribution in two dimensions at ¢; of I'; . The
derivation of this space is based on the TAD, and represents the
likelihood that an individual observation O; originated at a given
upstream location. In the color intensity plots, the color intensity
represents this likelihood of attribution for O, . Probabilities are
higher along the axis of W, fading tangentially in a Gaussian
distribution. Locations outside the TAD for a given W, and D
have an intensity value of 0 (black).

For the plume predictor with multiple accumulated observa-
tions, a gradual overlaid predictor map is created. The correlation
output of P; x W; for each O; can be summed over all O, where
each I'; is summed linearly with previous or future I'. As more
O are detected at sensor nodes, a greater degree of situational
awareness develops, allowing for the weighting of the sensor
connectivity map edges. Edges intensities between sensor nodes
represent the probability of observation correlation.

B. Track Formation

The sensor network connectivity map is generated allowing the
estimation of neighboring sensor relationships, and the estimation
of plume tracks from the sampled observations series. Each
sensor node is randomly placed on the space S, , and generates
weighted connectivity values depending on wind history, relative
sensor location, and the total number of observations received
that support a given node-node connection. These weighted edges
represent potential tracks, and the sum of a probability along
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Fig. 7. Single plume predictors for 2 sensors, based on a single observation.

Constant wind from the right. For this single observation the most likely attribution
region can be seen to the right. No sensors are located in this upstream direction,
therefore no connectivity relationships in the network would be affected.
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Fig. 8.  Accumulated and overlaid plume predictors ZPi for 7 sensors .
The unidirectional probability distribution results from no wind. For a single
observation, no information on direction is available. The predictors allow the
calculation of connectivity values between neighboring sensor nodes.

a series of tracks can be used to estimate the total likelihood
for a hypothesis combination of tracks. The figure illustrates the
output of the two most likely tracks in a given simulation run, as
well as the associated edge likelihoods, ranked into 4 categories
of probability. Comparison of these tracks demonstrates a high
degree of correlation with the true plume path traversed.

IV. CONCLUSION

The system performance illustrates the viability and potential
of using PQS process models within sensor networks for solv-
ing the inverse plume location problem. Moreover, the speedy
development of this application illustrates the potential power of
the PQS framework. Our group has been working with sensor
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Fig. 9.  Accumulated and overlaid plume predictors for 7 sensors, based on
the changing wind vector history. Z I";. In this scenario the plume sources and
wind originate from the middle left. Because several sensors are positioned within
the plume predictor regions of neighbor nodes, connectivity relationships will be
created or augmented. The predictors allow the calculation of connectivity values
between neighboring sensor nodes.
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Fig. 10.  The construction of plume track estimates showing four levels of

association probability between sensor nodes, where P; > Po > P3 > Pj.
These are the 2 most most likely tracks and correctly identity two plume sources
near the middle left edge of the plane. This experiment took place with variable
wind from the left, m=n=250, N=50 randomly placed sensors.

networks for the past four years and has shifted its efforts
away from the physical layer into the realm of sensor network
queries, applications, and building a generic query processing
infrastructure called the Process Query System (PQS). PQS is
designed as a core engine that can handle sensor network data
from a wide range of applications. So far we have implemented
sensor network applications in the areas of physical vehicle
multiple target tracking, live fish movement tracking, computer
security monitoring, and chemical plume tracking in a sensor
network. All these applications use the same core PQS engine.
The chemical plume tracking application takes real time obser-
vations of a chemical in the air environment, and allows a group of
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Fig. 11. Plume truth with two sources located at the mid-region of the left side.

sensors make statements about the chemical plume origin. These
generated hypotheses about the plume origin, size, history, and
shape are based on low resolution measurements of concentration
in conjunction with wind and wind history. By correctly assigning
observations to tracks with a plume predictor, the implementation
of PQS and MHT is possible for plumes. Maintaining and pruning
multiple tracks with MHT allows new hypotheses to be generated
from old observations if data arrives non-sequentially. The novelty
of this experiment is not the specific application, however the
fact that a generic tracking framework can be applied to such a
diverse set of domains. A domain expert can develop with PQS
a description of a high level "process" in the environment, and
very quickly have the system running, searching for instances of
this high level process. This allows end users more time to focus
on model development, as opposed to low level sensor network
hardware and data acquisition details.
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